1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2018 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Linq;
|
---|
25 | using HeuristicLab.Common;
|
---|
26 | using HeuristicLab.Core;
|
---|
27 | using HeuristicLab.Data;
|
---|
28 | using HeuristicLab.Parameters;
|
---|
29 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
30 | using HeuristicLab.Random;
|
---|
31 |
|
---|
32 | namespace HeuristicLab.Encodings.SymbolicExpressionTreeEncoding {
|
---|
33 | /// <summary>
|
---|
34 | /// Takes two parent individuals P0 and P1 each. Selects a random node N0 of P0 and a random node N1 of P1.
|
---|
35 | /// And replaces the branch with root0 N0 in P0 with N1 from P1 if the tree-size limits are not violated.
|
---|
36 | /// When recombination with N0 and N1 would create a tree that is too large or invalid the operator randomly selects new N0 and N1
|
---|
37 | /// until a valid configuration is found.
|
---|
38 | /// </summary>
|
---|
39 | [Item("SubtreeSwappingCrossover", "An operator which performs subtree swapping crossover.")]
|
---|
40 | [StorableClass]
|
---|
41 | public class SubtreeCrossover : SymbolicExpressionTreeCrossover, ISymbolicExpressionTreeSizeConstraintOperator {
|
---|
42 | private const string InternalCrossoverPointProbabilityParameterName = "InternalCrossoverPointProbability";
|
---|
43 | private const string MaximumSymbolicExpressionTreeLengthParameterName = "MaximumSymbolicExpressionTreeLength";
|
---|
44 | private const string MaximumSymbolicExpressionTreeDepthParameterName = "MaximumSymbolicExpressionTreeDepth";
|
---|
45 |
|
---|
46 | #region Parameter Properties
|
---|
47 | public IValueLookupParameter<PercentValue> InternalCrossoverPointProbabilityParameter {
|
---|
48 | get { return (IValueLookupParameter<PercentValue>)Parameters[InternalCrossoverPointProbabilityParameterName]; }
|
---|
49 | }
|
---|
50 | public IValueLookupParameter<IntValue> MaximumSymbolicExpressionTreeLengthParameter {
|
---|
51 | get { return (IValueLookupParameter<IntValue>)Parameters[MaximumSymbolicExpressionTreeLengthParameterName]; }
|
---|
52 | }
|
---|
53 | public IValueLookupParameter<IntValue> MaximumSymbolicExpressionTreeDepthParameter {
|
---|
54 | get { return (IValueLookupParameter<IntValue>)Parameters[MaximumSymbolicExpressionTreeDepthParameterName]; }
|
---|
55 | }
|
---|
56 | #endregion
|
---|
57 | #region Properties
|
---|
58 | public PercentValue InternalCrossoverPointProbability {
|
---|
59 | get { return InternalCrossoverPointProbabilityParameter.ActualValue; }
|
---|
60 | }
|
---|
61 | public IntValue MaximumSymbolicExpressionTreeLength {
|
---|
62 | get { return MaximumSymbolicExpressionTreeLengthParameter.ActualValue; }
|
---|
63 | }
|
---|
64 | public IntValue MaximumSymbolicExpressionTreeDepth {
|
---|
65 | get { return MaximumSymbolicExpressionTreeDepthParameter.ActualValue; }
|
---|
66 | }
|
---|
67 | #endregion
|
---|
68 | [StorableConstructor]
|
---|
69 | protected SubtreeCrossover(bool deserializing) : base(deserializing) { }
|
---|
70 | protected SubtreeCrossover(SubtreeCrossover original, Cloner cloner) : base(original, cloner) { }
|
---|
71 | public SubtreeCrossover()
|
---|
72 | : base() {
|
---|
73 | Parameters.Add(new ValueLookupParameter<IntValue>(MaximumSymbolicExpressionTreeLengthParameterName, "The maximal length (number of nodes) of the symbolic expression tree."));
|
---|
74 | Parameters.Add(new ValueLookupParameter<IntValue>(MaximumSymbolicExpressionTreeDepthParameterName, "The maximal depth of the symbolic expression tree (a tree with one node has depth = 0)."));
|
---|
75 | Parameters.Add(new ValueLookupParameter<PercentValue>(InternalCrossoverPointProbabilityParameterName, "The probability to select an internal crossover point (instead of a leaf node).", new PercentValue(0.9)));
|
---|
76 | }
|
---|
77 |
|
---|
78 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
79 | return new SubtreeCrossover(this, cloner);
|
---|
80 | }
|
---|
81 |
|
---|
82 | public override ISymbolicExpressionTree Crossover(IRandom random,
|
---|
83 | ISymbolicExpressionTree parent0, ISymbolicExpressionTree parent1) {
|
---|
84 | return Cross(random, parent0, parent1, InternalCrossoverPointProbability.Value,
|
---|
85 | MaximumSymbolicExpressionTreeLength.Value, MaximumSymbolicExpressionTreeDepth.Value);
|
---|
86 | }
|
---|
87 |
|
---|
88 | public static ISymbolicExpressionTree Cross(IRandom random,
|
---|
89 | ISymbolicExpressionTree parent0, ISymbolicExpressionTree parent1,
|
---|
90 | double internalCrossoverPointProbability, int maxTreeLength, int maxTreeDepth) {
|
---|
91 | // select a random crossover point in the first parent
|
---|
92 | CutPoint crossoverPoint0;
|
---|
93 | SelectCrossoverPoint(random, parent0, internalCrossoverPointProbability, maxTreeLength, maxTreeDepth, out crossoverPoint0);
|
---|
94 |
|
---|
95 | int childLength = crossoverPoint0.Child != null ? crossoverPoint0.Child.GetLength() : 0;
|
---|
96 | // calculate the max length and depth that the inserted branch can have
|
---|
97 | int maxInsertedBranchLength = Math.Max(0, maxTreeLength - (parent0.Length - childLength));
|
---|
98 | int maxInsertedBranchDepth = Math.Max(0, maxTreeDepth - parent0.Root.GetBranchLevel(crossoverPoint0.Parent));
|
---|
99 |
|
---|
100 | List<ISymbolicExpressionTreeNode> allowedBranches = new List<ISymbolicExpressionTreeNode>();
|
---|
101 | parent1.Root.ForEachNodePostfix((n) => {
|
---|
102 | if (n.GetLength() <= maxInsertedBranchLength &&
|
---|
103 | n.GetDepth() <= maxInsertedBranchDepth && crossoverPoint0.IsMatchingPointType(n))
|
---|
104 | allowedBranches.Add(n);
|
---|
105 | });
|
---|
106 | // empty branch
|
---|
107 | if (crossoverPoint0.IsMatchingPointType(null)) allowedBranches.Add(null);
|
---|
108 |
|
---|
109 | if (allowedBranches.Count == 0) {
|
---|
110 | return parent0;
|
---|
111 | } else {
|
---|
112 | var selectedBranch = SelectRandomBranch(random, allowedBranches, internalCrossoverPointProbability);
|
---|
113 | if (selectedBranch != null)
|
---|
114 | selectedBranch = (ISymbolicExpressionTreeNode)selectedBranch.Clone();
|
---|
115 |
|
---|
116 | if (crossoverPoint0.Child != null) {
|
---|
117 | // manipulate the tree of parent0 in place
|
---|
118 | // replace the branch in tree0 with the selected branch from tree1
|
---|
119 | crossoverPoint0.Parent.RemoveSubtree(crossoverPoint0.ChildIndex);
|
---|
120 | if (selectedBranch != null) {
|
---|
121 | crossoverPoint0.Parent.InsertSubtree(crossoverPoint0.ChildIndex, selectedBranch);
|
---|
122 | }
|
---|
123 | } else {
|
---|
124 | // child is null (additional child should be added under the parent)
|
---|
125 | if (selectedBranch != null) {
|
---|
126 | crossoverPoint0.Parent.AddSubtree(selectedBranch);
|
---|
127 | }
|
---|
128 | }
|
---|
129 | return parent0;
|
---|
130 | }
|
---|
131 | }
|
---|
132 |
|
---|
133 | private static void SelectCrossoverPoint(IRandom random, ISymbolicExpressionTree parent0, double internalNodeProbability, int maxBranchLength, int maxBranchDepth, out CutPoint crossoverPoint) {
|
---|
134 | if (internalNodeProbability < 0.0 || internalNodeProbability > 1.0) throw new ArgumentException("internalNodeProbability");
|
---|
135 | List<CutPoint> internalCrossoverPoints = new List<CutPoint>();
|
---|
136 | List<CutPoint> leafCrossoverPoints = new List<CutPoint>();
|
---|
137 | parent0.Root.ForEachNodePostfix((n) => {
|
---|
138 | if (n.SubtreeCount > 0 && n != parent0.Root) {
|
---|
139 | //avoid linq to reduce memory pressure
|
---|
140 | for (int i = 0; i < n.SubtreeCount; i++) {
|
---|
141 | var child = n.GetSubtree(i);
|
---|
142 | if (child.GetLength() <= maxBranchLength &&
|
---|
143 | child.GetDepth() <= maxBranchDepth) {
|
---|
144 | if (child.SubtreeCount > 0)
|
---|
145 | internalCrossoverPoints.Add(new CutPoint(n, child));
|
---|
146 | else
|
---|
147 | leafCrossoverPoints.Add(new CutPoint(n, child));
|
---|
148 | }
|
---|
149 | }
|
---|
150 |
|
---|
151 | // add one additional extension point if the number of sub trees for the symbol is not full
|
---|
152 | if (n.SubtreeCount < n.Grammar.GetMaximumSubtreeCount(n.Symbol)) {
|
---|
153 | // empty extension point
|
---|
154 | internalCrossoverPoints.Add(new CutPoint(n, n.SubtreeCount));
|
---|
155 | }
|
---|
156 | }
|
---|
157 | }
|
---|
158 | );
|
---|
159 |
|
---|
160 | if (random.NextDouble() < internalNodeProbability) {
|
---|
161 | // select from internal node if possible
|
---|
162 | if (internalCrossoverPoints.Count > 0) {
|
---|
163 | // select internal crossover point or leaf
|
---|
164 | crossoverPoint = internalCrossoverPoints[random.Next(internalCrossoverPoints.Count)];
|
---|
165 | } else {
|
---|
166 | // otherwise select external node
|
---|
167 | crossoverPoint = leafCrossoverPoints[random.Next(leafCrossoverPoints.Count)];
|
---|
168 | }
|
---|
169 | } else if (leafCrossoverPoints.Count > 0) {
|
---|
170 | // select from leaf crossover point if possible
|
---|
171 | crossoverPoint = leafCrossoverPoints[random.Next(leafCrossoverPoints.Count)];
|
---|
172 | } else {
|
---|
173 | // otherwise select internal crossover point
|
---|
174 | crossoverPoint = internalCrossoverPoints[random.Next(internalCrossoverPoints.Count)];
|
---|
175 | }
|
---|
176 | }
|
---|
177 |
|
---|
178 | private static ISymbolicExpressionTreeNode SelectRandomBranch(IRandom random, IEnumerable<ISymbolicExpressionTreeNode> branches, double internalNodeProbability) {
|
---|
179 | if (internalNodeProbability < 0.0 || internalNodeProbability > 1.0) throw new ArgumentException("internalNodeProbability");
|
---|
180 | List<ISymbolicExpressionTreeNode> allowedInternalBranches;
|
---|
181 | List<ISymbolicExpressionTreeNode> allowedLeafBranches;
|
---|
182 | if (random.NextDouble() < internalNodeProbability) {
|
---|
183 | // select internal node if possible
|
---|
184 | allowedInternalBranches = (from branch in branches
|
---|
185 | where branch != null && branch.SubtreeCount > 0
|
---|
186 | select branch).ToList();
|
---|
187 | if (allowedInternalBranches.Count > 0) {
|
---|
188 | return allowedInternalBranches.SampleRandom(random);
|
---|
189 |
|
---|
190 | } else {
|
---|
191 | // no internal nodes allowed => select leaf nodes
|
---|
192 | allowedLeafBranches = (from branch in branches
|
---|
193 | where branch == null || branch.SubtreeCount == 0
|
---|
194 | select branch).ToList();
|
---|
195 | return allowedLeafBranches.SampleRandom(random);
|
---|
196 | }
|
---|
197 | } else {
|
---|
198 | // select leaf node if possible
|
---|
199 | allowedLeafBranches = (from branch in branches
|
---|
200 | where branch == null || branch.SubtreeCount == 0
|
---|
201 | select branch).ToList();
|
---|
202 | if (allowedLeafBranches.Count > 0) {
|
---|
203 | return allowedLeafBranches.SampleRandom(random);
|
---|
204 | } else {
|
---|
205 | allowedInternalBranches = (from branch in branches
|
---|
206 | where branch != null && branch.SubtreeCount > 0
|
---|
207 | select branch).ToList();
|
---|
208 | return allowedInternalBranches.SampleRandom(random);
|
---|
209 |
|
---|
210 | }
|
---|
211 | }
|
---|
212 | }
|
---|
213 | }
|
---|
214 | }
|
---|