Free cookie consent management tool by TermsFeed Policy Generator

source: branches/2929_PrioritizedGrammarEnumeration/HeuristicLab.Algorithms.DataAnalysis.PGE/3.3/go-code/go-levmar/levmar-2.6/lmbc_core.c @ 16080

Last change on this file since 16080 was 16080, checked in by hmaislin, 6 years ago

#2929 initial commit of working PGE version

File size: 42.0 KB
Line 
1/////////////////////////////////////////////////////////////////////////////////
2//
3//  Levenberg - Marquardt non-linear minimization algorithm
4//  Copyright (C) 2004-05  Manolis Lourakis (lourakis at ics forth gr)
5//  Institute of Computer Science, Foundation for Research & Technology - Hellas
6//  Heraklion, Crete, Greece.
7//
8//  This program is free software; you can redistribute it and/or modify
9//  it under the terms of the GNU General Public License as published by
10//  the Free Software Foundation; either version 2 of the License, or
11//  (at your option) any later version.
12//
13//  This program is distributed in the hope that it will be useful,
14//  but WITHOUT ANY WARRANTY; without even the implied warranty of
15//  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16//  GNU General Public License for more details.
17//
18/////////////////////////////////////////////////////////////////////////////////
19
20#ifndef LM_REAL // not included by lmbc.c
21#error This file should not be compiled directly!
22#endif
23
24
25/* precision-specific definitions */
26#define FUNC_STATE LM_ADD_PREFIX(func_state)
27#define LNSRCH LM_ADD_PREFIX(lnsrch)
28#define BOXPROJECT LM_ADD_PREFIX(boxProject)
29#define BOXSCALE LM_ADD_PREFIX(boxScale)
30#define LEVMAR_BOX_CHECK LM_ADD_PREFIX(levmar_box_check)
31#define VECNORM LM_ADD_PREFIX(vecnorm)
32#define LEVMAR_BC_DER LM_ADD_PREFIX(levmar_bc_der)
33#define LEVMAR_BC_DIF LM_ADD_PREFIX(levmar_bc_dif)
34#define LEVMAR_FDIF_FORW_JAC_APPROX LM_ADD_PREFIX(levmar_fdif_forw_jac_approx)
35#define LEVMAR_FDIF_CENT_JAC_APPROX LM_ADD_PREFIX(levmar_fdif_cent_jac_approx)
36#define LEVMAR_TRANS_MAT_MAT_MULT LM_ADD_PREFIX(levmar_trans_mat_mat_mult)
37#define LEVMAR_L2NRMXMY LM_ADD_PREFIX(levmar_L2nrmxmy)
38#define LEVMAR_COVAR LM_ADD_PREFIX(levmar_covar)
39#define LMBC_DIF_DATA LM_ADD_PREFIX(lmbc_dif_data)
40#define LMBC_DIF_FUNC LM_ADD_PREFIX(lmbc_dif_func)
41#define LMBC_DIF_JACF LM_ADD_PREFIX(lmbc_dif_jacf)
42
43#ifdef HAVE_LAPACK
44#define AX_EQ_B_LU LM_ADD_PREFIX(Ax_eq_b_LU)
45#define AX_EQ_B_CHOL LM_ADD_PREFIX(Ax_eq_b_Chol)
46#define AX_EQ_B_QR LM_ADD_PREFIX(Ax_eq_b_QR)
47#define AX_EQ_B_QRLS LM_ADD_PREFIX(Ax_eq_b_QRLS)
48#define AX_EQ_B_SVD LM_ADD_PREFIX(Ax_eq_b_SVD)
49#define AX_EQ_B_BK LM_ADD_PREFIX(Ax_eq_b_BK)
50#else
51#define AX_EQ_B_LU LM_ADD_PREFIX(Ax_eq_b_LU_noLapack)
52#endif /* HAVE_LAPACK */
53
54#ifdef HAVE_PLASMA
55#define AX_EQ_B_PLASMA_CHOL LM_ADD_PREFIX(Ax_eq_b_PLASMA_Chol)
56#endif
57
58/* find the median of 3 numbers */
59#define __MEDIAN3(a, b, c) ( ((a) >= (b))?\
60        ( ((c) >= (a))? (a) : ( ((c) <= (b))? (b) : (c) ) ) : \
61        ( ((c) >= (b))? (b) : ( ((c) <= (a))? (a) : (c) ) ) )
62
63/* Projections to feasible set \Omega: P_{\Omega}(y) := arg min { ||x - y|| : x \in \Omega},  y \in R^m */
64
65/* project vector p to a box shaped feasible set. p is a mx1 vector.
66 * Either lb, ub can be NULL. If not NULL, they are mx1 vectors
67 */
68static void BOXPROJECT(LM_REAL *p, LM_REAL *lb, LM_REAL *ub, int m)
69{
70register int i;
71
72  if(!lb){ /* no lower bounds */
73    if(!ub) /* no upper bounds */
74      return;
75    else{ /* upper bounds only */
76      for(i=m; i-->0; )
77        if(p[i]>ub[i]) p[i]=ub[i];
78    }
79  }
80  else
81    if(!ub){ /* lower bounds only */
82      for(i=m; i-->0; )
83        if(p[i]<lb[i]) p[i]=lb[i];
84    }
85    else /* box bounds */
86      for(i=m; i-->0; )
87        p[i]=__MEDIAN3(lb[i], p[i], ub[i]);
88}
89#undef __MEDIAN3
90
91/* pointwise scaling of bounds with the mx1 vector scl. If div=1 scaling is by 1./scl.
92 * Either lb, ub can be NULL. If not NULL, they are mx1 vectors
93 */
94static void BOXSCALE(LM_REAL *lb, LM_REAL *ub, LM_REAL *scl, int m, int div)
95{
96register int i;
97
98  if(!lb){ /* no lower bounds */
99    if(!ub) /* no upper bounds */
100      return;
101    else{ /* upper bounds only */
102      if(div){
103        for(i=m; i-->0; )
104          if(ub[i]!=LM_REAL_MAX)
105            ub[i]=ub[i]/scl[i];
106      }else{
107        for(i=m; i-->0; )
108          if(ub[i]!=LM_REAL_MAX)
109            ub[i]=ub[i]*scl[i];
110      }
111    }
112  }
113  else
114    if(!ub){ /* lower bounds only */
115      if(div){
116        for(i=m; i-->0; )
117          if(lb[i]!=LM_REAL_MIN)
118            lb[i]=lb[i]/scl[i];
119      }else{
120        for(i=m; i-->0; )
121          if(lb[i]!=LM_REAL_MIN)
122            lb[i]=lb[i]*scl[i];
123      }
124    }
125    else{ /* box bounds */
126      if(div){
127        for(i=m; i-->0; ){
128          if(ub[i]!=LM_REAL_MAX)
129            ub[i]=ub[i]/scl[i];
130          if(lb[i]!=LM_REAL_MIN)
131            lb[i]=lb[i]/scl[i];
132        }
133      }else{
134        for(i=m; i-->0; ){
135          if(ub[i]!=LM_REAL_MAX)
136            ub[i]=ub[i]*scl[i];
137          if(lb[i]!=LM_REAL_MIN)
138            lb[i]=lb[i]*scl[i];
139        }
140      }
141    }
142}
143
144/* compute the norm of a vector in a manner that avoids overflows
145 */
146static LM_REAL VECNORM(LM_REAL *x, int n)
147{
148#ifdef HAVE_LAPACK
149#define NRM2 LM_MK_BLAS_NAME(nrm2)
150extern LM_REAL NRM2(int *n, LM_REAL *dx, int *incx);
151int one=1;
152
153  return NRM2(&n, x, &one);
154#undef NRM2
155#else // no LAPACK, use the simple method described by Blue in TOMS78
156register int i;
157LM_REAL max, sum, tmp;
158
159  for(i=n, max=0.0; i-->0; )
160    if(x[i]>max) max=x[i];
161    else if(x[i]<-max) max=-x[i];
162
163  for(i=n, sum=0.0; i-->0; ){
164    tmp=x[i]/max;
165    sum+=tmp*tmp;
166  }
167
168  return max*(LM_REAL)sqrt(sum);
169#endif /* HAVE_LAPACK */
170}
171
172struct FUNC_STATE{
173  int n, *nfev;
174  LM_REAL *hx, *x;
175  LM_REAL *lb, *ub;
176  void *adata;
177};
178
179static void
180LNSRCH(int m, LM_REAL *x, LM_REAL f, LM_REAL *g, LM_REAL *p, LM_REAL alpha, LM_REAL *xpls,
181       LM_REAL *ffpls, void (*func)(LM_REAL *p, LM_REAL *hx, int m, int n, void *adata), struct FUNC_STATE *state,
182       int *mxtake, int *iretcd, LM_REAL stepmx, LM_REAL steptl, LM_REAL *sx)
183{
184/* Find a next newton iterate by backtracking line search.
185 * Specifically, finds a \lambda such that for a fixed alpha<0.5 (usually 1e-4),
186 * f(x + \lambda*p) <= f(x) + alpha * \lambda * g^T*p
187 *
188 * Translated (with a few changes) from Schnabel, Koontz & Weiss uncmin.f,  v1.3
189 * Main changes include the addition of box projection and modification of the scaling
190 * logic since uncmin.f operates in the original (unscaled) variable space.
191
192 * PARAMETERS :
193
194 *  m       --> dimension of problem (i.e. number of variables)
195 *  x(m)    --> old iterate:  x[k-1]
196 *  f       --> function value at old iterate, f(x)
197 *  g(m)    --> gradient at old iterate, g(x), or approximate
198 *  p(m)    --> non-zero newton step
199 *  alpha   --> fixed constant < 0.5 for line search (see above)
200 *  xpls(m) <--  new iterate x[k]
201 *  ffpls   <--  function value at new iterate, f(xpls)
202 *  func    --> name of subroutine to evaluate function
203 *  state   <--> information other than x and m that func requires.
204 *          state is not modified in xlnsrch (but can be modified by func).
205 *  iretcd  <--  return code
206 *  mxtake  <--  boolean flag indicating step of maximum length used
207 *  stepmx  --> maximum allowable step size
208 *  steptl  --> relative step size at which successive iterates
209 *          considered close enough to terminate algorithm
210 *  sx(m)   --> diagonal scaling matrix for x, can be NULL
211
212 *  internal variables
213
214 *  sln    newton length
215 *  rln    relative length of newton step
216*/
217
218    register int i, j;
219    int firstback = 1;
220    LM_REAL disc;
221    LM_REAL a3, b;
222    LM_REAL t1, t2, t3, lambda, tlmbda, rmnlmb;
223    LM_REAL scl, rln, sln, slp;
224    LM_REAL tmp1, tmp2;
225    LM_REAL fpls, pfpls = 0., plmbda = 0.; /* -Wall */
226
227    f*=LM_CNST(0.5);
228    *mxtake = 0;
229    *iretcd = 2;
230    tmp1 = 0.;
231    for (i = m; i-- > 0;  )
232      tmp1 += p[i] * p[i];
233    sln = (LM_REAL)sqrt(tmp1);
234    if (sln > stepmx) {
235    /*  newton step longer than maximum allowed */
236      scl = stepmx / sln;
237      for (i = m; i-- > 0;  ) /* p * scl */
238        p[i]*=scl;
239      sln = stepmx;
240    }
241    for (i = m, slp = rln = 0.; i-- > 0;  ){
242      slp+=g[i]*p[i]; /* g^T * p */
243
244      tmp1 = (FABS(x[i])>=LM_CNST(1.))? FABS(x[i]) : LM_CNST(1.);
245      tmp2 = FABS(p[i])/tmp1;
246      if(rln < tmp2) rln = tmp2;
247    }
248    rmnlmb = steptl / rln;
249    lambda = LM_CNST(1.0);
250
251    /*  check if new iterate satisfactory.  generate new lambda if necessary. */
252
253    for(j = _LSITMAX_; j-- > 0;  ) {
254      for (i = m; i-- > 0;  )
255        xpls[i] = x[i] + lambda * p[i];
256      BOXPROJECT(xpls, state->lb, state->ub, m); /* project to feasible set */
257
258      /* evaluate function at new point */
259      if(!sx){
260        (*func)(xpls, state->hx, m, state->n, state->adata); ++(*(state->nfev));
261      }
262      else{
263        for (i = m; i-- > 0;  ) xpls[i] *= sx[i];
264        (*func)(xpls, state->hx, m, state->n, state->adata); ++(*(state->nfev));
265        for (i = m; i-- > 0;  ) xpls[i] /= sx[i];
266      }
267      /* ### state->hx=state->x-state->hx, tmp1=||state->hx|| */
268#if 1
269       tmp1=LEVMAR_L2NRMXMY(state->hx, state->x, state->hx, state->n);
270#else
271      for(i=0, tmp1=0.0; i<state->n; ++i){
272        state->hx[i]=tmp2=state->x[i]-state->hx[i];
273        tmp1+=tmp2*tmp2;
274      }
275#endif
276      fpls=LM_CNST(0.5)*tmp1; *ffpls=tmp1;
277
278      if (fpls <= f + slp * alpha * lambda) { /* solution found */
279        *iretcd = 0;
280        if (lambda == LM_CNST(1.) && sln > stepmx * LM_CNST(.99)) *mxtake = 1;
281        return;
282      }
283
284      /* else : solution not (yet) found */
285
286      /* First find a point with a finite value */
287
288      if (lambda < rmnlmb) {
289        /* no satisfactory xpls found sufficiently distinct from x */
290
291        *iretcd = 1;
292        return;
293      }
294      else { /* calculate new lambda */
295
296        /* modifications to cover non-finite values */
297        if (!LM_FINITE(fpls)) {
298          lambda *= LM_CNST(0.1);
299          firstback = 1;
300        }
301        else {
302          if (firstback) { /* first backtrack: quadratic fit */
303            tlmbda = -lambda * slp / ((fpls - f - slp) * LM_CNST(2.));
304            firstback = 0;
305          }
306          else { /* all subsequent backtracks: cubic fit */
307            t1 = fpls - f - lambda * slp;
308            t2 = pfpls - f - plmbda * slp;
309            t3 = LM_CNST(1.) / (lambda - plmbda);
310            a3 = LM_CNST(3.) * t3 * (t1 / (lambda * lambda)
311              - t2 / (plmbda * plmbda));
312            b = t3 * (t2 * lambda / (plmbda * plmbda)
313                - t1 * plmbda / (lambda * lambda));
314            disc = b * b - a3 * slp;
315            if (disc > b * b)
316            /* only one positive critical point, must be minimum */
317              tlmbda = (-b + ((a3 < 0)? -(LM_REAL)sqrt(disc): (LM_REAL)sqrt(disc))) /a3;
318            else
319            /* both critical points positive, first is minimum */
320              tlmbda = (-b + ((a3 < 0)? (LM_REAL)sqrt(disc): -(LM_REAL)sqrt(disc))) /a3;
321
322            if (tlmbda > lambda * LM_CNST(.5))
323              tlmbda = lambda * LM_CNST(.5);
324          }
325          plmbda = lambda;
326          pfpls = fpls;
327          if (tlmbda < lambda * LM_CNST(.1))
328            lambda *= LM_CNST(.1);
329          else
330            lambda = tlmbda;
331        }
332      }
333    }
334    /* this point is reached when the iterations limit is exceeded */
335    *iretcd = 1; /* failed */
336    return;
337} /* LNSRCH */
338
339/*
340 * This function seeks the parameter vector p that best describes the measurements
341 * vector x under box constraints.
342 * More precisely, given a vector function  func : R^m --> R^n with n>=m,
343 * it finds p s.t. func(p) ~= x, i.e. the squared second order (i.e. L2) norm of
344 * e=x-func(p) is minimized under the constraints lb[i]<=p[i]<=ub[i].
345 * If no lower bound constraint applies for p[i], use -DBL_MAX/-FLT_MAX for lb[i];
346 * If no upper bound constraint applies for p[i], use DBL_MAX/FLT_MAX for ub[i].
347 *
348 * This function requires an analytic Jacobian. In case the latter is unavailable,
349 * use LEVMAR_BC_DIF() bellow
350 *
351 * Returns the number of iterations (>=0) if successful, LM_ERROR if failed
352 *
353 * For details, see C. Kanzow, N. Yamashita and M. Fukushima: "Levenberg-Marquardt
354 * methods for constrained nonlinear equations with strong local convergence properties",
355 * Journal of Computational and Applied Mathematics 172, 2004, pp. 375-397.
356 * Also, see K. Madsen, H.B. Nielsen and O. Tingleff's lecture notes on
357 * unconstrained Levenberg-Marquardt at http://www.imm.dtu.dk/pubdb/views/edoc_download.php/3215/pdf/imm3215.pdf
358 *
359 * The algorithm implemented by this function employs projected gradient steps. Since steepest descent
360 * is very sensitive to poor scaling, diagonal scaling has been implemented through the dscl argument:
361 * Instead of minimizing f(p) for p, f(D*q) is minimized for q=D^-1*p, D being a diagonal scaling
362 * matrix whose diagonal equals dscl (see Nocedal-Wright p.27). dscl should contain "typical" magnitudes
363 * for the parameters p. A NULL value for dscl implies no scaling. i.e. D=I.
364 * To account for scaling, the code divides the starting point and box bounds pointwise by dscl. Moreover,
365 * before calling func and jacf the scaling has to be undone (by multiplying), as should be done with
366 * the final point. Note also that jac_q=jac_p*D, where jac_q, jac_p are the jacobians w.r.t. q & p, resp.
367 */
368
369int LEVMAR_BC_DER(
370  void (*func)(LM_REAL *p, LM_REAL *hx, int m, int n, void *adata), /* functional relation describing measurements. A p \in R^m yields a \hat{x} \in  R^n */
371  void (*jacf)(LM_REAL *p, LM_REAL *j, int m, int n, void *adata),  /* function to evaluate the Jacobian \part x / \part p */
372  LM_REAL *p,         /* I/O: initial parameter estimates. On output has the estimated solution */
373  LM_REAL *x,         /* I: measurement vector. NULL implies a zero vector */
374  int m,              /* I: parameter vector dimension (i.e. #unknowns) */
375  int n,              /* I: measurement vector dimension */
376  LM_REAL *lb,        /* I: vector of lower bounds. If NULL, no lower bounds apply */
377  LM_REAL *ub,        /* I: vector of upper bounds. If NULL, no upper bounds apply */
378  LM_REAL *dscl,      /* I: diagonal scaling constants. NULL implies no scaling */
379  int itmax,          /* I: maximum number of iterations */
380  LM_REAL opts[4],    /* I: minim. options [\mu, \epsilon1, \epsilon2, \epsilon3]. Respectively the scale factor for initial \mu,
381                       * stopping thresholds for ||J^T e||_inf, ||Dp||_2 and ||e||_2. Set to NULL for defaults to be used.
382                       * Note that ||J^T e||_inf is computed on free (not equal to lb[i] or ub[i]) variables only.
383                       */
384  LM_REAL info[LM_INFO_SZ],
385                     /* O: information regarding the minimization. Set to NULL if don't care
386                      * info[0]= ||e||_2 at initial p.
387                      * info[1-4]=[ ||e||_2, ||J^T e||_inf,  ||Dp||_2, mu/max[J^T J]_ii ], all computed at estimated p.
388                      * info[5]= # iterations,
389                      * info[6]=reason for terminating: 1 - stopped by small gradient J^T e
390                      *                                 2 - stopped by small Dp
391                      *                                 3 - stopped by itmax
392                      *                                 4 - singular matrix. Restart from current p with increased mu
393                      *                                 5 - no further error reduction is possible. Restart with increased mu
394                      *                                 6 - stopped by small ||e||_2
395                      *                                 7 - stopped by invalid (i.e. NaN or Inf) "func" values. This is a user error
396                      * info[7]= # function evaluations
397                      * info[8]= # Jacobian evaluations
398                      * info[9]= # linear systems solved, i.e. # attempts for reducing error
399                      */
400  LM_REAL *work,     /* working memory at least LM_BC_DER_WORKSZ() reals large, allocated if NULL */
401  LM_REAL *covar,    /* O: Covariance matrix corresponding to LS solution; mxm. Set to NULL if not needed. */
402  void *adata)       /* pointer to possibly additional data, passed uninterpreted to func & jacf.
403                      * Set to NULL if not needed
404                      */
405{
406register int i, j, k, l;
407int worksz, freework=0, issolved;
408/* temp work arrays */
409LM_REAL *e,          /* nx1 */
410       *hx,         /* \hat{x}_i, nx1 */
411       *jacTe,      /* J^T e_i mx1 */
412       *jac,        /* nxm */
413       *jacTjac,    /* mxm */
414       *Dp,         /* mx1 */
415   *diag_jacTjac,   /* diagonal of J^T J, mx1 */
416       *pDp,        /* p + Dp, mx1 */
417   *sp_pDp=NULL;    /* dscl*p or dscl*pDp, mx1 */
418
419register LM_REAL mu,  /* damping constant */
420                tmp; /* mainly used in matrix & vector multiplications */
421LM_REAL p_eL2, jacTe_inf, pDp_eL2; /* ||e(p)||_2, ||J^T e||_inf, ||e(p+Dp)||_2 */
422LM_REAL p_L2, Dp_L2=LM_REAL_MAX, dF, dL;
423LM_REAL tau, eps1, eps2, eps2_sq, eps3;
424LM_REAL init_p_eL2;
425int nu=2, nu2, stop=0, nfev, njev=0, nlss=0;
426const int nm=n*m;
427
428/* variables for constrained LM */
429struct FUNC_STATE fstate;
430LM_REAL alpha=LM_CNST(1e-4), beta=LM_CNST(0.9), gamma=LM_CNST(0.99995), rho=LM_CNST(1e-8);
431LM_REAL t, t0, jacTeDp;
432LM_REAL tmin=LM_CNST(1e-12), tming=LM_CNST(1e-18); /* minimum step length for LS and PG steps */
433const LM_REAL tini=LM_CNST(1.0); /* initial step length for LS and PG steps */
434int nLMsteps=0, nLSsteps=0, nPGsteps=0, gprevtaken=0;
435int numactive;
436int (*linsolver)(LM_REAL *A, LM_REAL *B, LM_REAL *x, int m)=NULL;
437
438  mu=jacTe_inf=t=0.0;  tmin=tmin; /* -Wall */
439
440  if(n<m){
441    fprintf(stderr, LCAT(LEVMAR_BC_DER, "(): cannot solve a problem with fewer measurements [%d] than unknowns [%d]\n"), n, m);
442    return LM_ERROR;
443  }
444
445  if(!jacf){
446    fprintf(stderr, RCAT("No function specified for computing the Jacobian in ", LEVMAR_BC_DER)
447        RCAT("().\nIf no such function is available, use ", LEVMAR_BC_DIF) RCAT("() rather than ", LEVMAR_BC_DER) "()\n");
448    return LM_ERROR;
449  }
450
451  if(!LEVMAR_BOX_CHECK(lb, ub, m)){
452    fprintf(stderr, LCAT(LEVMAR_BC_DER, "(): at least one lower bound exceeds the upper one\n"));
453    return LM_ERROR;
454  }
455
456  if(dscl){ /* check that scaling consts are valid */
457    for(i=m; i-->0; )
458      if(dscl[i]<=0.0){
459        fprintf(stderr, LCAT(LEVMAR_BC_DER, "(): scaling constants should be positive (scale %d: %g <= 0)\n"), i, dscl[i]);
460        return LM_ERROR;
461      }
462
463    sp_pDp=(LM_REAL *)malloc(m*sizeof(LM_REAL));
464    if(!sp_pDp){
465      fprintf(stderr, LCAT(LEVMAR_BC_DER, "(): memory allocation request failed\n"));
466      return LM_ERROR;
467    }
468  }
469
470  if(opts){
471    tau=opts[0];
472    eps1=opts[1];
473    eps2=opts[2];
474    eps2_sq=opts[2]*opts[2];
475    eps3=opts[3];
476  }
477  else{ // use default values
478    tau=LM_CNST(LM_INIT_MU);
479    eps1=LM_CNST(LM_STOP_THRESH);
480    eps2=LM_CNST(LM_STOP_THRESH);
481    eps2_sq=LM_CNST(LM_STOP_THRESH)*LM_CNST(LM_STOP_THRESH);
482    eps3=LM_CNST(LM_STOP_THRESH);
483  }
484
485  if(!work){
486    worksz=LM_BC_DER_WORKSZ(m, n); //2*n+4*m + n*m + m*m;
487    work=(LM_REAL *)malloc(worksz*sizeof(LM_REAL)); /* allocate a big chunk in one step */
488    if(!work){
489      fprintf(stderr, LCAT(LEVMAR_BC_DER, "(): memory allocation request failed\n"));
490      return LM_ERROR;
491    }
492    freework=1;
493  }
494
495  /* set up work arrays */
496  e=work;
497  hx=e + n;
498  jacTe=hx + n;
499  jac=jacTe + m;
500  jacTjac=jac + nm;
501  Dp=jacTjac + m*m;
502  diag_jacTjac=Dp + m;
503  pDp=diag_jacTjac + m;
504
505  fstate.n=n;
506  fstate.hx=hx;
507  fstate.x=x;
508  fstate.lb=lb;
509  fstate.ub=ub;
510  fstate.adata=adata;
511  fstate.nfev=&nfev;
512 
513  /* see if starting point is within the feasible set */
514  for(i=0; i<m; ++i)
515    pDp[i]=p[i];
516  BOXPROJECT(p, lb, ub, m); /* project to feasible set */
517  for(i=0; i<m; ++i)
518    if(pDp[i]!=p[i])
519      fprintf(stderr, RCAT("Warning: component %d of starting point not feasible in ", LEVMAR_BC_DER) "()! [%g projected to %g]\n",
520                      i, pDp[i], p[i]);
521
522  /* compute e=x - f(p) and its L2 norm */
523  (*func)(p, hx, m, n, adata); nfev=1;
524  /* ### e=x-hx, p_eL2=||e|| */
525#if 1
526  p_eL2=LEVMAR_L2NRMXMY(e, x, hx, n);
527#else
528  for(i=0, p_eL2=0.0; i<n; ++i){
529    e[i]=tmp=x[i]-hx[i];
530    p_eL2+=tmp*tmp;
531  }
532#endif
533  init_p_eL2=p_eL2;
534  if(!LM_FINITE(p_eL2)) stop=7;
535
536  if(dscl){
537    /* scale starting point and constraints */
538    for(i=m; i-->0; ) p[i]/=dscl[i];
539    BOXSCALE(lb, ub, dscl, m, 1);
540  }
541
542  for(k=0; k<itmax && !stop; ++k){
543    /* Note that p and e have been updated at a previous iteration */
544
545    if(p_eL2<=eps3){ /* error is small */
546      stop=6;
547      break;
548    }
549
550    /* Compute the Jacobian J at p,  J^T J,  J^T e,  ||J^T e||_inf and ||p||^2.
551     * Since J^T J is symmetric, its computation can be sped up by computing
552     * only its upper triangular part and copying it to the lower part
553     */
554
555    if(!dscl){
556      (*jacf)(p, jac, m, n, adata); ++njev;
557    }
558    else{
559      for(i=m; i-->0; ) sp_pDp[i]=p[i]*dscl[i];
560      (*jacf)(sp_pDp, jac, m, n, adata); ++njev;
561
562      /* compute jac*D */
563      for(i=n; i-->0; ){
564        register LM_REAL *jacim;
565
566        jacim=jac+i*m;
567        for(j=m; j-->0; )
568          jacim[j]*=dscl[j]; // jac[i*m+j]*=dscl[j];
569      }
570    }
571
572    /* J^T J, J^T e */
573    if(nm<__BLOCKSZ__SQ){ // this is a small problem
574      /* J^T*J_ij = \sum_l J^T_il * J_lj = \sum_l J_li * J_lj.
575       * Thus, the product J^T J can be computed using an outer loop for
576       * l that adds J_li*J_lj to each element ij of the result. Note that
577       * with this scheme, the accesses to J and JtJ are always along rows,
578       * therefore induces less cache misses compared to the straightforward
579       * algorithm for computing the product (i.e., l loop is innermost one).
580       * A similar scheme applies to the computation of J^T e.
581       * However, for large minimization problems (i.e., involving a large number
582       * of unknowns and measurements) for which J/J^T J rows are too large to
583       * fit in the L1 cache, even this scheme incures many cache misses. In
584       * such cases, a cache-efficient blocking scheme is preferable.
585       *
586       * Thanks to John Nitao of Lawrence Livermore Lab for pointing out this
587       * performance problem.
588       *
589       * Note that the non-blocking algorithm is faster on small
590       * problems since in this case it avoids the overheads of blocking.
591       */
592      register LM_REAL alpha, *jaclm, *jacTjacim;
593
594      /* looping downwards saves a few computations */
595      for(i=m*m; i-->0; )
596        jacTjac[i]=0.0;
597      for(i=m; i-->0; )
598        jacTe[i]=0.0;
599
600      for(l=n; l-->0; ){
601        jaclm=jac+l*m;
602        for(i=m; i-->0; ){
603          jacTjacim=jacTjac+i*m;
604          alpha=jaclm[i]; //jac[l*m+i];
605          for(j=i+1; j-->0; ) /* j<=i computes lower triangular part only */
606            jacTjacim[j]+=jaclm[j]*alpha; //jacTjac[i*m+j]+=jac[l*m+j]*alpha
607
608          /* J^T e */
609          jacTe[i]+=alpha*e[l];
610        }
611      }
612
613      for(i=m; i-->0; ) /* copy to upper part */
614        for(j=i+1; j<m; ++j)
615          jacTjac[i*m+j]=jacTjac[j*m+i];
616    }
617    else{ // this is a large problem
618      /* Cache efficient computation of J^T J based on blocking
619       */
620      LEVMAR_TRANS_MAT_MAT_MULT(jac, jacTjac, n, m);
621
622      /* cache efficient computation of J^T e */
623      for(i=0; i<m; ++i)
624        jacTe[i]=0.0;
625
626      for(i=0; i<n; ++i){
627        register LM_REAL *jacrow;
628
629        for(l=0, jacrow=jac+i*m, tmp=e[i]; l<m; ++l)
630          jacTe[l]+=jacrow[l]*tmp;
631      }
632    }
633
634    /* Compute ||J^T e||_inf and ||p||^2. Note that ||J^T e||_inf
635     * is computed for free (i.e. inactive) variables only.
636     * At a local minimum, if p[i]==ub[i] then g[i]>0;
637     * if p[i]==lb[i] g[i]<0; otherwise g[i]=0
638     */
639    for(i=j=numactive=0, p_L2=jacTe_inf=0.0; i<m; ++i){
640      if(ub && p[i]==ub[i]){ ++numactive; if(jacTe[i]>0.0) ++j; }
641      else if(lb && p[i]==lb[i]){ ++numactive; if(jacTe[i]<0.0) ++j; }
642      else if(jacTe_inf < (tmp=FABS(jacTe[i]))) jacTe_inf=tmp;
643
644      diag_jacTjac[i]=jacTjac[i*m+i]; /* save diagonal entries so that augmentation can be later canceled */
645      p_L2+=p[i]*p[i];
646    }
647    //p_L2=sqrt(p_L2);
648
649#if 0
650if(!(k%100)){
651  printf("Current estimate: ");
652  for(i=0; i<m; ++i)
653    printf("%.9g ", p[i]);
654  printf("-- errors %.9g %0.9g, #active %d [%d]\n", jacTe_inf, p_eL2, numactive, j);
655}
656#endif
657
658    /* check for convergence */
659    if(j==numactive && (jacTe_inf <= eps1)){
660      Dp_L2=0.0; /* no increment for p in this case */
661      stop=1;
662      break;
663    }
664
665   /* compute initial damping factor */
666    if(k==0){
667      if(!lb && !ub){ /* no bounds */
668        for(i=0, tmp=LM_REAL_MIN; i<m; ++i)
669          if(diag_jacTjac[i]>tmp) tmp=diag_jacTjac[i]; /* find max diagonal element */
670        mu=tau*tmp;
671      }
672      else
673        mu=LM_CNST(0.5)*tau*p_eL2; /* use Kanzow's starting mu */
674    }
675
676    /* determine increment using a combination of adaptive damping, line search and projected gradient search */
677    while(1){
678      /* augment normal equations */
679      for(i=0; i<m; ++i)
680        jacTjac[i*m+i]+=mu;
681
682      /* solve augmented equations */
683#ifdef HAVE_LAPACK
684      /* 7 alternatives are available: LU, Cholesky + Cholesky with PLASMA, LDLt, 2 variants of QR decomposition and SVD.
685       * For matrices with dimensions of at least a few hundreds, the PLASMA implementation of Cholesky is the fastest.
686       * From the serial solvers, Cholesky is the fastest but might occasionally be inapplicable due to numerical round-off;
687       * QR is slower but more robust; SVD is the slowest but most robust; LU is quite robust but
688       * slower than LDLt; LDLt offers a good tradeoff between robustness and speed
689       */
690
691      // issolved=AX_EQ_B_BK(jacTjac, jacTe, Dp, m); ++nlss; linsolver=AX_EQ_B_BK;
692      //issolved=AX_EQ_B_LU(jacTjac, jacTe, Dp, m); ++nlss; linsolver=AX_EQ_B_LU;
693      //issolved=AX_EQ_B_CHOL(jacTjac, jacTe, Dp, m); ++nlss; linsolver=AX_EQ_B_CHOL;
694#ifdef HAVE_PLASMA
695      //issolved=AX_EQ_B_PLASMA_CHOL(jacTjac, jacTe, Dp, m); ++nlss; linsolver=AX_EQ_B_PLASMA_CHOL;
696#endif
697      //issolved=AX_EQ_B_QR(jacTjac, jacTe, Dp, m); ++nlss; linsolver=AX_EQ_B_QR;
698      issolved=AX_EQ_B_QRLS(jacTjac, jacTe, Dp, m, m); ++nlss; linsolver=(int (*)(LM_REAL *A, LM_REAL *B, LM_REAL *x, int m))AX_EQ_B_QRLS;
699      // issolved=AX_EQ_B_SVD(jacTjac, jacTe, Dp, m); ++nlss; linsolver=AX_EQ_B_SVD;
700
701#else
702      /* use the LU included with levmar */
703      issolved=AX_EQ_B_LU(jacTjac, jacTe, Dp, m); ++nlss; linsolver=AX_EQ_B_LU;
704#endif /* HAVE_LAPACK */
705
706      if(issolved){
707        for(i=0; i<m; ++i)
708          pDp[i]=p[i] + Dp[i];
709
710        /* compute p's new estimate and ||Dp||^2 */
711        BOXPROJECT(pDp, lb, ub, m); /* project to feasible set */
712        for(i=0, Dp_L2=0.0; i<m; ++i){
713          Dp[i]=tmp=pDp[i]-p[i];
714          Dp_L2+=tmp*tmp;
715        }
716        //Dp_L2=sqrt(Dp_L2);
717
718        if(Dp_L2<=eps2_sq*p_L2){ /* relative change in p is small, stop */
719          stop=2;
720          break;
721        }
722
723        if(Dp_L2>=(p_L2+eps2)/(LM_CNST(EPSILON)*LM_CNST(EPSILON))){ /* almost singular */
724          stop=4;
725          break;
726        }
727
728        if(!dscl){
729          (*func)(pDp, hx, m, n, adata); ++nfev; /* evaluate function at p + Dp */
730        }
731        else{
732          for(i=m; i-->0; ) sp_pDp[i]=pDp[i]*dscl[i];
733          (*func)(sp_pDp, hx, m, n, adata); ++nfev; /* evaluate function at p + Dp */
734        }
735
736        /* ### hx=x-hx, pDp_eL2=||hx|| */
737#if 1
738        pDp_eL2=LEVMAR_L2NRMXMY(hx, x, hx, n);
739#else
740        for(i=0, pDp_eL2=0.0; i<n; ++i){ /* compute ||e(pDp)||_2 */
741          hx[i]=tmp=x[i]-hx[i];
742          pDp_eL2+=tmp*tmp;
743        }
744#endif
745        /* the following test ensures that the computation of pDp_eL2 has not overflowed.
746         * Such an overflow does no harm here, thus it is not signalled as an error
747         */
748        if(!LM_FINITE(pDp_eL2) && !LM_FINITE(VECNORM(hx, n))){
749          stop=7;
750          break;
751        }
752
753        if(pDp_eL2<=gamma*p_eL2){
754          for(i=0, dL=0.0; i<m; ++i)
755            dL+=Dp[i]*(mu*Dp[i]+jacTe[i]);
756
757#if 1
758          if(dL>0.0){
759            dF=p_eL2-pDp_eL2;
760            tmp=(LM_CNST(2.0)*dF/dL-LM_CNST(1.0));
761            tmp=LM_CNST(1.0)-tmp*tmp*tmp;
762            mu=mu*( (tmp>=LM_CNST(ONE_THIRD))? tmp : LM_CNST(ONE_THIRD) );
763          }
764          else{
765            tmp=LM_CNST(0.1)*pDp_eL2; /* pDp_eL2 is the new p_eL2 */
766            mu=(mu>=tmp)? tmp : mu;
767          }
768#else
769
770          tmp=LM_CNST(0.1)*pDp_eL2; /* pDp_eL2 is the new p_eL2 */
771          mu=(mu>=tmp)? tmp : mu;
772#endif
773
774          nu=2;
775
776          for(i=0 ; i<m; ++i) /* update p's estimate */
777            p[i]=pDp[i];
778
779          for(i=0; i<n; ++i) /* update e and ||e||_2 */
780            e[i]=hx[i];
781          p_eL2=pDp_eL2;
782          ++nLMsteps;
783          gprevtaken=0;
784          break;
785        }
786        /* note that if the LM step is not taken, code falls through to the LM line search below */
787      }
788      else{
789
790      /* the augmented linear system could not be solved, increase mu */
791
792        mu*=nu;
793        nu2=nu<<1; // 2*nu;
794        if(nu2<=nu){ /* nu has wrapped around (overflown). Thanks to Frank Jordan for spotting this case */
795          stop=5;
796          break;
797        }
798        nu=nu2;
799
800        for(i=0; i<m; ++i) /* restore diagonal J^T J entries */
801          jacTjac[i*m+i]=diag_jacTjac[i];
802
803        continue; /* solve again with increased nu */
804      }
805
806      /* if this point is reached, the LM step did not reduce the error;
807       * see if it is a descent direction
808       */
809
810      /* negate jacTe (i.e. g) & compute g^T * Dp */
811      for(i=0, jacTeDp=0.0; i<m; ++i){
812        jacTe[i]=-jacTe[i];
813        jacTeDp+=jacTe[i]*Dp[i];
814      }
815
816      if(jacTeDp<=-rho*pow(Dp_L2, LM_CNST(_POW_)/LM_CNST(2.0))){
817        /* Dp is a descent direction; do a line search along it */
818#if 1
819        /* use Schnabel's backtracking line search; it requires fewer "func" evaluations */
820        {
821        int mxtake, iretcd;
822        LM_REAL stepmx, steptl=LM_CNST(1e3)*(LM_REAL)sqrt(LM_REAL_EPSILON);
823
824        tmp=(LM_REAL)sqrt(p_L2); stepmx=LM_CNST(1e3)*( (tmp>=LM_CNST(1.0))? tmp : LM_CNST(1.0) );
825
826        LNSRCH(m, p, p_eL2, jacTe, Dp, alpha, pDp, &pDp_eL2, func, &fstate,
827               &mxtake, &iretcd, stepmx, steptl, dscl); /* NOTE: LNSRCH() updates hx */
828        if(iretcd!=0 || !LM_FINITE(pDp_eL2)) goto gradproj; /* rather inelegant but effective way to handle LNSRCH() failures... */
829        }
830#else
831        /* use the simpler (but slower!) line search described by Kanzow et al */
832        for(t=tini; t>tmin; t*=beta){
833          for(i=0; i<m; ++i)
834            pDp[i]=p[i] + t*Dp[i];
835          BOXPROJECT(pDp, lb, ub, m); /* project to feasible set */
836
837          if(!dscl){
838            (*func)(pDp, hx, m, n, adata); ++nfev; /* evaluate function at p + t*Dp */
839          }
840          else{
841            for(i=m; i-->0; ) sp_pDp[i]=pDp[i]*dscl[i];
842            (*func)(sp_pDp, hx, m, n, adata); ++nfev; /* evaluate function at p + t*Dp */
843          }
844
845          /* compute ||e(pDp)||_2 */
846          /* ### hx=x-hx, pDp_eL2=||hx|| */
847#if 1
848          pDp_eL2=LEVMAR_L2NRMXMY(hx, x, hx, n);
849#else
850          for(i=0, pDp_eL2=0.0; i<n; ++i){
851            hx[i]=tmp=x[i]-hx[i];
852            pDp_eL2+=tmp*tmp;
853          }
854#endif /* ||e(pDp)||_2 */
855          if(!LM_FINITE(pDp_eL2)) goto gradproj; /* treat as line search failure */
856
857          //if(LM_CNST(0.5)*pDp_eL2<=LM_CNST(0.5)*p_eL2 + t*alpha*jacTeDp) break;
858          if(pDp_eL2<=p_eL2 + LM_CNST(2.0)*t*alpha*jacTeDp) break;
859        }
860#endif /* line search alternatives */
861
862        ++nLSsteps;
863        gprevtaken=0;
864
865        /* NOTE: new estimate for p is in pDp, associated error in hx and its norm in pDp_eL2.
866         * These values are used below to update their corresponding variables
867         */
868      }
869      else{
870        /* Note that this point can also be reached via a goto when LNSRCH() fails. */
871gradproj:
872
873        /* jacTe has been negated above. Being a descent direction, it is next used
874         * to make a projected gradient step
875         */
876
877        /* compute ||g|| */
878        for(i=0, tmp=0.0; i<m; ++i)
879          tmp+=jacTe[i]*jacTe[i];
880        tmp=(LM_REAL)sqrt(tmp);
881        tmp=LM_CNST(100.0)/(LM_CNST(1.0)+tmp);
882        t0=(tmp<=tini)? tmp : tini; /* guard against poor scaling & large steps; see (3.50) in C.T. Kelley's book */
883
884        /* if the previous step was along the gradient descent, try to use the t employed in that step */
885        for(t=(gprevtaken)? t : t0; t>tming; t*=beta){
886          for(i=0; i<m; ++i)
887            pDp[i]=p[i] - t*jacTe[i];
888          BOXPROJECT(pDp, lb, ub, m); /* project to feasible set */
889          for(i=0, Dp_L2=0.0; i<m; ++i){
890            Dp[i]=tmp=pDp[i]-p[i];
891            Dp_L2+=tmp*tmp;
892          }
893
894          if(!dscl){
895            (*func)(pDp, hx, m, n, adata); ++nfev; /* evaluate function at p - t*g */
896          }
897          else{
898            for(i=m; i-->0; ) sp_pDp[i]=pDp[i]*dscl[i];
899            (*func)(sp_pDp, hx, m, n, adata); ++nfev; /* evaluate function at p - t*g */
900          }
901
902          /* compute ||e(pDp)||_2 */
903          /* ### hx=x-hx, pDp_eL2=||hx|| */
904#if 1
905          pDp_eL2=LEVMAR_L2NRMXMY(hx, x, hx, n);
906#else
907          for(i=0, pDp_eL2=0.0; i<n; ++i){
908            hx[i]=tmp=x[i]-hx[i];
909            pDp_eL2+=tmp*tmp;
910          }
911#endif
912          /* the following test ensures that the computation of pDp_eL2 has not overflowed.
913           * Such an overflow does no harm here, thus it is not signalled as an error
914           */
915          if(!LM_FINITE(pDp_eL2) && !LM_FINITE(VECNORM(hx, n))){
916            stop=7;
917            goto breaknested;
918          }
919
920          /* compute ||g^T * Dp||. Note that if pDp has not been altered by projection
921           * (i.e. BOXPROJECT), jacTeDp=-t*||g||^2
922           */
923          for(i=0, jacTeDp=0.0; i<m; ++i)
924            jacTeDp+=jacTe[i]*Dp[i];
925
926          if(gprevtaken && pDp_eL2<=p_eL2 + LM_CNST(2.0)*LM_CNST(0.99999)*jacTeDp){ /* starting t too small */
927            t=t0;
928            gprevtaken=0;
929            continue;
930          }
931          //if(LM_CNST(0.5)*pDp_eL2<=LM_CNST(0.5)*p_eL2 + alpha*jacTeDp) terminatePGLS;
932          if(pDp_eL2<=p_eL2 + LM_CNST(2.0)*alpha*jacTeDp) goto terminatePGLS;
933
934          //if(pDp_eL2<=p_eL2 - LM_CNST(2.0)*alpha/t*Dp_L2) goto terminatePGLS; // sufficient decrease condition proposed by Kelley in (5.13)
935        }
936       
937        /* if this point is reached then the gradient line search has failed */
938        gprevtaken=0;
939        break;
940
941terminatePGLS:
942
943        ++nPGsteps;
944        gprevtaken=1;
945        /* NOTE: new estimate for p is in pDp, associated error in hx and its norm in pDp_eL2 */
946      }
947
948      /* update using computed values */
949
950      for(i=0, Dp_L2=0.0; i<m; ++i){
951        tmp=pDp[i]-p[i];
952        Dp_L2+=tmp*tmp;
953      }
954      //Dp_L2=sqrt(Dp_L2);
955
956      if(Dp_L2<=eps2_sq*p_L2){ /* relative change in p is small, stop */
957        stop=2;
958        break;
959      }
960
961      for(i=0 ; i<m; ++i) /* update p's estimate */
962        p[i]=pDp[i];
963
964      for(i=0; i<n; ++i) /* update e and ||e||_2 */
965        e[i]=hx[i];
966      p_eL2=pDp_eL2;
967      break;
968    } /* inner loop */
969  }
970
971breaknested: /* NOTE: this point is also reached via an explicit goto! */
972
973  if(k>=itmax) stop=3;
974
975  for(i=0; i<m; ++i) /* restore diagonal J^T J entries */
976    jacTjac[i*m+i]=diag_jacTjac[i];
977
978  if(info){
979    info[0]=init_p_eL2;
980    info[1]=p_eL2;
981    info[2]=jacTe_inf;
982    info[3]=Dp_L2;
983    for(i=0, tmp=LM_REAL_MIN; i<m; ++i)
984      if(tmp<jacTjac[i*m+i]) tmp=jacTjac[i*m+i];
985    info[4]=mu/tmp;
986    info[5]=(LM_REAL)k;
987    info[6]=(LM_REAL)stop;
988    info[7]=(LM_REAL)nfev;
989    info[8]=(LM_REAL)njev;
990    info[9]=(LM_REAL)nlss;
991  }
992
993  /* covariance matrix */
994  if(covar){
995    LEVMAR_COVAR(jacTjac, covar, p_eL2, m, n);
996
997    if(dscl){ /* correct for the scaling */
998      for(i=m; i-->0; )
999        for(j=m; j-->0; )
1000          covar[i*m+j]*=(dscl[i]*dscl[j]);
1001    }
1002  }
1003                                                               
1004  if(freework) free(work);
1005
1006#ifdef LINSOLVERS_RETAIN_MEMORY
1007    if(linsolver) (*linsolver)(NULL, NULL, NULL, 0);
1008#endif
1009
1010#if 0
1011printf("%d LM steps, %d line search, %d projected gradient\n", nLMsteps, nLSsteps, nPGsteps);
1012#endif
1013
1014  if(dscl){
1015    /* scale final point and constraints */
1016    for(i=0; i<m; ++i) p[i]*=dscl[i];
1017    BOXSCALE(lb, ub, dscl, m, 0);
1018    free(sp_pDp);
1019  }
1020
1021  return (stop!=4 && stop!=7)?  k : LM_ERROR;
1022}
1023
1024/* following struct & LMBC_DIF_XXX functions won't be necessary if a true secant
1025 * version of LEVMAR_BC_DIF() is implemented...
1026 */
1027struct LMBC_DIF_DATA{
1028  int ffdif; // nonzero if forward differencing is used
1029  void (*func)(LM_REAL *p, LM_REAL *hx, int m, int n, void *adata);
1030  LM_REAL *hx, *hxx;
1031  void *adata;
1032  LM_REAL delta;
1033};
1034
1035static void LMBC_DIF_FUNC(LM_REAL *p, LM_REAL *hx, int m, int n, void *data)
1036{
1037struct LMBC_DIF_DATA *dta=(struct LMBC_DIF_DATA *)data;
1038
1039  /* call user-supplied function passing it the user-supplied data */
1040  (*(dta->func))(p, hx, m, n, dta->adata);
1041}
1042
1043static void LMBC_DIF_JACF(LM_REAL *p, LM_REAL *jac, int m, int n, void *data)
1044{
1045struct LMBC_DIF_DATA *dta=(struct LMBC_DIF_DATA *)data;
1046
1047  if(dta->ffdif){
1048    /* evaluate user-supplied function at p */
1049    (*(dta->func))(p, dta->hx, m, n, dta->adata);
1050    LEVMAR_FDIF_FORW_JAC_APPROX(dta->func, p, dta->hx, dta->hxx, dta->delta, jac, m, n, dta->adata);
1051  }
1052  else
1053    LEVMAR_FDIF_CENT_JAC_APPROX(dta->func, p, dta->hx, dta->hxx, dta->delta, jac, m, n, dta->adata);
1054}
1055
1056
1057/* No Jacobian version of the LEVMAR_BC_DER() function above: the Jacobian is approximated with
1058 * the aid of finite differences (forward or central, see the comment for the opts argument)
1059 * Ideally, this function should be implemented with a secant approach. Currently, it just calls
1060 * LEVMAR_BC_DER()
1061 */
1062int LEVMAR_BC_DIF(
1063  void (*func)(LM_REAL *p, LM_REAL *hx, int m, int n, void *adata), /* functional relation describing measurements. A p \in R^m yields a \hat{x} \in  R^n */
1064  LM_REAL *p,         /* I/O: initial parameter estimates. On output has the estimated solution */
1065  LM_REAL *x,         /* I: measurement vector. NULL implies a zero vector */
1066  int m,              /* I: parameter vector dimension (i.e. #unknowns) */
1067  int n,              /* I: measurement vector dimension */
1068  LM_REAL *lb,        /* I: vector of lower bounds. If NULL, no lower bounds apply */
1069  LM_REAL *ub,        /* I: vector of upper bounds. If NULL, no upper bounds apply */
1070  LM_REAL *dscl,      /* I: diagonal scaling constants. NULL implies no scaling */
1071  int itmax,          /* I: maximum number of iterations */
1072  LM_REAL opts[5],    /* I: opts[0-4] = minim. options [\mu, \epsilon1, \epsilon2, \epsilon3, \delta]. Respectively the
1073                       * scale factor for initial \mu, stopping thresholds for ||J^T e||_inf, ||Dp||_2 and ||e||_2 and
1074                       * the step used in difference approximation to the Jacobian. Set to NULL for defaults to be used.
1075                       * If \delta<0, the Jacobian is approximated with central differences which are more accurate
1076                       * (but slower!) compared to the forward differences employed by default.
1077                       */
1078  LM_REAL info[LM_INFO_SZ],
1079                     /* O: information regarding the minimization. Set to NULL if don't care
1080                      * info[0]= ||e||_2 at initial p.
1081                      * info[1-4]=[ ||e||_2, ||J^T e||_inf,  ||Dp||_2, mu/max[J^T J]_ii ], all computed at estimated p.
1082                      * info[5]= # iterations,
1083                      * info[6]=reason for terminating: 1 - stopped by small gradient J^T e
1084                      *                                 2 - stopped by small Dp
1085                      *                                 3 - stopped by itmax
1086                      *                                 4 - singular matrix. Restart from current p with increased mu
1087                      *                                 5 - no further error reduction is possible. Restart with increased mu
1088                      *                                 6 - stopped by small ||e||_2
1089                      *                                 7 - stopped by invalid (i.e. NaN or Inf) "func" values. This is a user error
1090                      * info[7]= # function evaluations
1091                      * info[8]= # Jacobian evaluations
1092                      * info[9]= # linear systems solved, i.e. # attempts for reducing error
1093                      */
1094  LM_REAL *work,     /* working memory at least LM_BC_DIF_WORKSZ() reals large, allocated if NULL */
1095  LM_REAL *covar,    /* O: Covariance matrix corresponding to LS solution; mxm. Set to NULL if not needed. */
1096  void *adata)       /* pointer to possibly additional data, passed uninterpreted to func.
1097                      * Set to NULL if not needed
1098                      */
1099{
1100struct LMBC_DIF_DATA data;
1101int ret;
1102
1103  //fprintf(stderr, RCAT("\nWarning: current implementation of ", LEVMAR_BC_DIF) "() does not use a secant approach!\n\n");
1104
1105  data.ffdif=!opts || opts[4]>=0.0;
1106
1107  data.func=func;
1108  data.hx=(LM_REAL *)malloc(2*n*sizeof(LM_REAL)); /* allocate a big chunk in one step */
1109  if(!data.hx){
1110    fprintf(stderr, LCAT(LEVMAR_BC_DIF, "(): memory allocation request failed\n"));
1111    return LM_ERROR;
1112  }
1113  data.hxx=data.hx+n;
1114  data.adata=adata;
1115  data.delta=(opts)? FABS(opts[4]) : (LM_REAL)LM_DIFF_DELTA;
1116
1117  ret=LEVMAR_BC_DER(LMBC_DIF_FUNC, LMBC_DIF_JACF, p, x, m, n, lb, ub, dscl, itmax, opts, info, work, covar, (void *)&data);
1118
1119  if(info){ /* correct the number of function calls */
1120    if(data.ffdif)
1121      info[7]+=info[8]*(m+1); /* each Jacobian evaluation costs m+1 function calls */
1122    else
1123      info[7]+=info[8]*(2*m); /* each Jacobian evaluation costs 2*m function calls */
1124  }
1125
1126  free(data.hx);
1127
1128  return ret;
1129}
1130
1131/* undefine everything. THIS MUST REMAIN AT THE END OF THE FILE */
1132#undef FUNC_STATE
1133#undef LNSRCH
1134#undef BOXPROJECT
1135#undef BOXSCALE
1136#undef LEVMAR_BOX_CHECK
1137#undef VECNORM
1138#undef LEVMAR_BC_DER
1139#undef LMBC_DIF_DATA
1140#undef LMBC_DIF_FUNC
1141#undef LMBC_DIF_JACF
1142#undef LEVMAR_BC_DIF
1143#undef LEVMAR_FDIF_FORW_JAC_APPROX
1144#undef LEVMAR_FDIF_CENT_JAC_APPROX
1145#undef LEVMAR_COVAR
1146#undef LEVMAR_TRANS_MAT_MAT_MULT
1147#undef LEVMAR_L2NRMXMY
1148#undef AX_EQ_B_LU
1149#undef AX_EQ_B_CHOL
1150#undef AX_EQ_B_PLASMA_CHOL
1151#undef AX_EQ_B_QR
1152#undef AX_EQ_B_QRLS
1153#undef AX_EQ_B_SVD
1154#undef AX_EQ_B_BK
Note: See TracBrowser for help on using the repository browser.