Free cookie consent management tool by TermsFeed Policy Generator

source: branches/2925_AutoDiffForDynamicalModels/HeuristicLab.Problems.DynamicalSystemsModelling/3.3/Solution.cs @ 17187

Last change on this file since 17187 was 16893, checked in by gkronber, 6 years ago

#2925: allow separate configuration of const opt steps for pre-tuning and the full ODE. Allow weighted combination of fitness using pretuning NMSE and the full ODE NMSE

File size: 4.1 KB
Line 
1using System;
2using System.Collections.Generic;
3using System.Linq;
4using HeuristicLab.Common;
5using HeuristicLab.Core;
6using HeuristicLab.Data;
7using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
8using HeuristicLab.Problems.DataAnalysis;
9using HeuristicLab.Problems.DataAnalysis.Symbolic;
10using HEAL.Attic;
11
12namespace HeuristicLab.Problems.DynamicalSystemsModelling {
13  [StorableType("70AA254D-706E-474A-8129-E9A8A7067FE1")]
14  public class Solution : Item {
15    [Storable]
16    private ISymbolicExpressionTree[] trees;
17    public ISymbolicExpressionTree[] Trees {
18      get { return trees; }
19    }
20
21    [Storable]
22    private IRegressionProblemData problemData;
23    public IRegressionProblemData ProblemData {
24      get { return problemData; }
25    }
26    [Storable]
27    private string[] targetVars;
28    public string[] TargetVariables {
29      get { return targetVars; }
30    }
31    [Storable]
32    private string[] latentVariables;
33    public string[] LatentVariables {
34      get { return latentVariables; }
35    }
36    [Storable]
37    private IEnumerable<IntRange> trainingEpisodes;
38    public IEnumerable<IntRange> TrainingEpisodes {
39      get { return trainingEpisodes; }
40    }
41    [Storable]
42    private string odeSolver;
43    [Storable]
44    private int numericIntegrationSteps;
45
46    [StorableConstructor]
47    private Solution(StorableConstructorFlag _) : base(_) { }
48    [StorableHook(HookType.AfterDeserialization)]
49    private void AfterDeserialization() {
50    }
51
52    // cloning
53    private Solution(Solution original, Cloner cloner)
54      : base(original, cloner) {
55      this.trees = new ISymbolicExpressionTree[original.trees.Length];
56      for (int i = 0; i < trees.Length; i++) this.trees[i] = cloner.Clone(original.trees[i]);
57      this.problemData = cloner.Clone(original.problemData);
58      this.targetVars = original.TargetVariables.ToArray();
59      this.latentVariables = original.LatentVariables.ToArray();
60      this.trainingEpisodes = original.TrainingEpisodes.Select(te => cloner.Clone(te)).ToArray();
61      this.odeSolver = original.odeSolver;
62      this.numericIntegrationSteps = original.numericIntegrationSteps;
63    }
64
65    public Solution(ISymbolicExpressionTree[] trees,
66      IRegressionProblemData problemData,
67      string[] targetVars, string[] latentVariables, IEnumerable<IntRange> trainingEpisodes,
68      string odeSolver, int numericIntegrationSteps) : base() {
69      this.trees = trees;
70
71      this.problemData = problemData;
72      this.targetVars = targetVars;
73      this.latentVariables = latentVariables;
74      this.trainingEpisodes = trainingEpisodes;
75      this.odeSolver = odeSolver;
76      this.numericIntegrationSteps = numericIntegrationSteps;
77    }
78
79    public override IDeepCloneable Clone(Cloner cloner) {
80      return new Solution(this, cloner);
81    }
82
83    public IEnumerable<double[]> Predict(IntRange episode, int forecastHorizon) {
84      var forecastEpisode = new IntRange(episode.Start, episode.End + forecastHorizon);
85
86      var inputVariables = trees.SelectMany(t => t.IterateNodesPrefix().OfType<VariableTreeNode>().Select(n => n.VariableName))
87        .Except(targetVars)
88        .Except(latentVariables)
89        .Distinct();
90
91      var optimizationData = new Problem.OptimizationData(trees, targetVars, inputVariables.ToArray(), problemData, null, new[] { forecastEpisode }, numericIntegrationSteps, latentVariables, odeSolver);
92      var fi = new double[forecastEpisode.Size * targetVars.Length];
93      var jac = new double[forecastEpisode.Size * targetVars.Length, optimizationData.nodeValueLookup.ParameterCount];
94      var latentValues = new double[forecastEpisode.Size, LatentVariables.Length];
95      Problem.Integrate(optimizationData, fi, jac, latentValues);
96      for (int i = 0; i < forecastEpisode.Size; i++) {
97        var res = new double[targetVars.Length + latentVariables.Length];
98        for (int j = 0; j < targetVars.Length; j++) {
99          res[j] = fi[i * targetVars.Length + j];
100        }
101        for (int j = 0; j < latentVariables.Length; j++) {
102          res[targetVars.Length + j] = latentValues[i, j];
103        }
104        yield return res;
105      }
106    }
107  }
108}
Note: See TracBrowser for help on using the repository browser.