1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2018 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Diagnostics;
|
---|
25 | using System.Globalization;
|
---|
26 | using System.Linq;
|
---|
27 | using HeuristicLab.Analysis;
|
---|
28 | using HeuristicLab.Collections;
|
---|
29 | using HeuristicLab.Common;
|
---|
30 | using HeuristicLab.Core;
|
---|
31 | using HeuristicLab.Data;
|
---|
32 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
33 | using HeuristicLab.Optimization;
|
---|
34 | using HeuristicLab.Parameters;
|
---|
35 | using HeuristicLab.Problems.DataAnalysis;
|
---|
36 | using HeuristicLab.Problems.DataAnalysis.Symbolic;
|
---|
37 | using HeuristicLab.Problems.Instances;
|
---|
38 | using Variable = HeuristicLab.Problems.DataAnalysis.Symbolic.Variable;
|
---|
39 | using HEAL.Attic;
|
---|
40 | using HeuristicLab.Problems.DataAnalysis.Symbolic.Regression;
|
---|
41 |
|
---|
42 | namespace HeuristicLab.Problems.DynamicalSystemsModelling {
|
---|
43 | [Item("Dynamical Systems Modelling Problem", "TODO")]
|
---|
44 | [Creatable(CreatableAttribute.Categories.GeneticProgrammingProblems, Priority = 900)]
|
---|
45 | [StorableType("065C6A61-773A-42C9-9DE5-61A5D1D823EB")]
|
---|
46 | public sealed class Problem : SingleObjectiveBasicProblem<MultiEncoding>, IRegressionProblem, IProblemInstanceConsumer<Problem> {
|
---|
47 | #region parameter names
|
---|
48 | private const string ProblemDataParameterName = "Data";
|
---|
49 | private const string TargetVariablesParameterName = "Target variables";
|
---|
50 | private const string FunctionSetParameterName = "Function set";
|
---|
51 | private const string MaximumLengthParameterName = "Size limit";
|
---|
52 | private const string MaximumPretuningParameterOptimizationIterationsParameterName = "Max. pre-tuning parameter optimization iterations";
|
---|
53 | private const string MaximumOdeParameterOptimizationIterationsParameterName = "Max. ODE parameter optimization iterations";
|
---|
54 | private const string NumberOfLatentVariablesParameterName = "Number of latent variables";
|
---|
55 | private const string NumericIntegrationStepsParameterName = "Steps for numeric integration";
|
---|
56 | private const string TrainingEpisodesParameterName = "Training episodes";
|
---|
57 | private const string OptimizeParametersForEpisodesParameterName = "Optimize parameters for episodes";
|
---|
58 | private const string OdeSolverParameterName = "ODE Solver";
|
---|
59 | #endregion
|
---|
60 |
|
---|
61 | #region Parameter Properties
|
---|
62 | IParameter IDataAnalysisProblem.ProblemDataParameter { get { return ProblemDataParameter; } }
|
---|
63 |
|
---|
64 | public IValueParameter<IRegressionProblemData> ProblemDataParameter {
|
---|
65 | get { return (IValueParameter<IRegressionProblemData>)Parameters[ProblemDataParameterName]; }
|
---|
66 | }
|
---|
67 | public IValueParameter<ReadOnlyCheckedItemList<StringValue>> TargetVariablesParameter {
|
---|
68 | get { return (IValueParameter<ReadOnlyCheckedItemList<StringValue>>)Parameters[TargetVariablesParameterName]; }
|
---|
69 | }
|
---|
70 | public IValueParameter<ReadOnlyCheckedItemList<StringValue>> FunctionSetParameter {
|
---|
71 | get { return (IValueParameter<ReadOnlyCheckedItemList<StringValue>>)Parameters[FunctionSetParameterName]; }
|
---|
72 | }
|
---|
73 | public IFixedValueParameter<IntValue> MaximumLengthParameter {
|
---|
74 | get { return (IFixedValueParameter<IntValue>)Parameters[MaximumLengthParameterName]; }
|
---|
75 | }
|
---|
76 |
|
---|
77 | public IFixedValueParameter<IntValue> MaximumPretuningParameterOptimizationIterationsParameter {
|
---|
78 | get { return (IFixedValueParameter<IntValue>)Parameters[MaximumPretuningParameterOptimizationIterationsParameterName]; }
|
---|
79 | }
|
---|
80 | public IFixedValueParameter<IntValue> MaximumOdeParameterOptimizationIterationsParameter {
|
---|
81 | get { return (IFixedValueParameter<IntValue>)Parameters[MaximumOdeParameterOptimizationIterationsParameterName]; }
|
---|
82 | }
|
---|
83 | public IFixedValueParameter<IntValue> NumberOfLatentVariablesParameter {
|
---|
84 | get { return (IFixedValueParameter<IntValue>)Parameters[NumberOfLatentVariablesParameterName]; }
|
---|
85 | }
|
---|
86 | public IFixedValueParameter<IntValue> NumericIntegrationStepsParameter {
|
---|
87 | get { return (IFixedValueParameter<IntValue>)Parameters[NumericIntegrationStepsParameterName]; }
|
---|
88 | }
|
---|
89 | public IValueParameter<ItemList<IntRange>> TrainingEpisodesParameter {
|
---|
90 | get { return (IValueParameter<ItemList<IntRange>>)Parameters[TrainingEpisodesParameterName]; }
|
---|
91 | }
|
---|
92 | public IFixedValueParameter<BoolValue> OptimizeParametersForEpisodesParameter {
|
---|
93 | get { return (IFixedValueParameter<BoolValue>)Parameters[OptimizeParametersForEpisodesParameterName]; }
|
---|
94 | }
|
---|
95 | public IConstrainedValueParameter<StringValue> OdeSolverParameter {
|
---|
96 | get { return (IConstrainedValueParameter<StringValue>)Parameters[OdeSolverParameterName]; }
|
---|
97 | }
|
---|
98 | public IFixedValueParameter<DoubleValue> PretuningErrorWeight {
|
---|
99 | get { return (IFixedValueParameter<DoubleValue>)Parameters["Pretuning NMSE weight"]; }
|
---|
100 | }
|
---|
101 | public IFixedValueParameter<DoubleValue> OdeErrorWeight {
|
---|
102 | get { return (IFixedValueParameter<DoubleValue>)Parameters["ODE NMSE weight"]; }
|
---|
103 | }
|
---|
104 | public IFixedValueParameter<DoubleValue> NumericDifferencesSmoothingParameter {
|
---|
105 | get { return (IFixedValueParameter<DoubleValue>)Parameters["Numeric differences smoothing"]; }
|
---|
106 | }
|
---|
107 | #endregion
|
---|
108 |
|
---|
109 | #region Properties
|
---|
110 | public IRegressionProblemData ProblemData {
|
---|
111 | get { return ProblemDataParameter.Value; }
|
---|
112 | set { ProblemDataParameter.Value = value; }
|
---|
113 | }
|
---|
114 | IDataAnalysisProblemData IDataAnalysisProblem.ProblemData { get { return ProblemData; } }
|
---|
115 |
|
---|
116 | public ReadOnlyCheckedItemList<StringValue> TargetVariables {
|
---|
117 | get { return TargetVariablesParameter.Value; }
|
---|
118 | }
|
---|
119 |
|
---|
120 | public ReadOnlyCheckedItemList<StringValue> FunctionSet {
|
---|
121 | get { return FunctionSetParameter.Value; }
|
---|
122 | }
|
---|
123 |
|
---|
124 | public int MaximumLength {
|
---|
125 | get { return MaximumLengthParameter.Value.Value; }
|
---|
126 | }
|
---|
127 | public int MaximumPretuningParameterOptimizationIterations {
|
---|
128 | get { return MaximumPretuningParameterOptimizationIterationsParameter.Value.Value; }
|
---|
129 | }
|
---|
130 | public int MaximumOdeParameterOptimizationIterations {
|
---|
131 | get { return MaximumOdeParameterOptimizationIterationsParameter.Value.Value; }
|
---|
132 | }
|
---|
133 | public int NumberOfLatentVariables {
|
---|
134 | get { return NumberOfLatentVariablesParameter.Value.Value; }
|
---|
135 | }
|
---|
136 | public int NumericIntegrationSteps {
|
---|
137 | get { return NumericIntegrationStepsParameter.Value.Value; }
|
---|
138 | }
|
---|
139 | public IList<IntRange> TrainingEpisodes {
|
---|
140 | get { return TrainingEpisodesParameter.Value; }
|
---|
141 | }
|
---|
142 | public bool OptimizeParametersForEpisodes {
|
---|
143 | get { return OptimizeParametersForEpisodesParameter.Value.Value; }
|
---|
144 | }
|
---|
145 | public double NumericDifferencesSmoothing {
|
---|
146 | get { return NumericDifferencesSmoothingParameter.Value.Value; }
|
---|
147 | }
|
---|
148 |
|
---|
149 |
|
---|
150 | public string OdeSolver {
|
---|
151 | get { return OdeSolverParameter.Value.Value; }
|
---|
152 | set {
|
---|
153 | var matchingValue = OdeSolverParameter.ValidValues.FirstOrDefault(v => v.Value == value);
|
---|
154 | if (matchingValue == null) throw new ArgumentOutOfRangeException();
|
---|
155 | else OdeSolverParameter.Value = matchingValue;
|
---|
156 | }
|
---|
157 | }
|
---|
158 |
|
---|
159 | #endregion
|
---|
160 |
|
---|
161 | public event EventHandler ProblemDataChanged;
|
---|
162 |
|
---|
163 | public override bool Maximization {
|
---|
164 | get { return false; } // we minimize NMSE
|
---|
165 | }
|
---|
166 |
|
---|
167 | #region item cloning and persistence
|
---|
168 | // persistence
|
---|
169 | [StorableConstructor]
|
---|
170 | private Problem(StorableConstructorFlag _) : base(_) { }
|
---|
171 | [StorableHook(HookType.AfterDeserialization)]
|
---|
172 | private void AfterDeserialization() {
|
---|
173 | if (!Parameters.ContainsKey(OptimizeParametersForEpisodesParameterName)) {
|
---|
174 | Parameters.Add(new FixedValueParameter<BoolValue>(OptimizeParametersForEpisodesParameterName, "Flag to select if parameters should be optimized globally or for each episode individually.", new BoolValue(false)));
|
---|
175 | }
|
---|
176 | int iters = 100;
|
---|
177 | if (Parameters.ContainsKey("Max. parameter optimization iterations")) {
|
---|
178 | iters = ((IFixedValueParameter<IntValue>)Parameters["Max. parameter optimization iterations"]).Value.Value;
|
---|
179 | }
|
---|
180 | if (!Parameters.ContainsKey(MaximumPretuningParameterOptimizationIterationsParameterName)) {
|
---|
181 | Parameters.Add(new FixedValueParameter<IntValue>(MaximumPretuningParameterOptimizationIterationsParameterName, "The maximum number of iterations for optimization of parameters of individual equations for numerical derivatives (using L-BFGS). More iterations makes the algorithm slower, fewer iterations might prevent convergence in the optimization scheme. Default = 100", new IntValue(iters)));
|
---|
182 | }
|
---|
183 | if (!Parameters.ContainsKey(MaximumOdeParameterOptimizationIterationsParameterName)) {
|
---|
184 | Parameters.Add(new FixedValueParameter<IntValue>(MaximumOdeParameterOptimizationIterationsParameterName, "The maximum number of iterations for optimization of the full ODE parameters (using L-BFGS). More iterations makes the algorithm slower, fewer iterations might prevent convergence in the optimization scheme. Default = 100", new IntValue(iters)));
|
---|
185 | }
|
---|
186 |
|
---|
187 | if (!Parameters.ContainsKey("Pretuning NMSE weight"))
|
---|
188 | Parameters.Add(new FixedValueParameter<DoubleValue>("Pretuning NMSE weight", "For fitness weighting", new DoubleValue(0.5)));
|
---|
189 | if (!Parameters.ContainsKey("ODE NMSE weight"))
|
---|
190 | Parameters.Add(new FixedValueParameter<DoubleValue>("ODE NMSE weight", "For fitness weighting", new DoubleValue(0.5)));
|
---|
191 |
|
---|
192 |
|
---|
193 | RegisterEventHandlers();
|
---|
194 | }
|
---|
195 |
|
---|
196 | // cloning
|
---|
197 | private Problem(Problem original, Cloner cloner)
|
---|
198 | : base(original, cloner) {
|
---|
199 | RegisterEventHandlers();
|
---|
200 | }
|
---|
201 | public override IDeepCloneable Clone(Cloner cloner) { return new Problem(this, cloner); }
|
---|
202 | #endregion
|
---|
203 |
|
---|
204 | public Problem()
|
---|
205 | : base() {
|
---|
206 | var targetVariables = new CheckedItemList<StringValue>().AsReadOnly(); // HACK: it would be better to provide a new class derived from IDataAnalysisProblem
|
---|
207 | var functions = CreateFunctionSet();
|
---|
208 | Parameters.Add(new ValueParameter<IRegressionProblemData>(ProblemDataParameterName, "The data captured from the dynamical system. Use CSV import functionality to import data.", new RegressionProblemData()));
|
---|
209 | Parameters.Add(new ValueParameter<ReadOnlyCheckedItemList<StringValue>>(TargetVariablesParameterName, "Target variables (overrides setting in ProblemData)", targetVariables));
|
---|
210 | Parameters.Add(new ValueParameter<ReadOnlyCheckedItemList<StringValue>>(FunctionSetParameterName, "The list of allowed functions", functions));
|
---|
211 | Parameters.Add(new FixedValueParameter<IntValue>(MaximumLengthParameterName, "The maximally allowed length of each expression. Set to a small value (5 - 25). Default = 10", new IntValue(10)));
|
---|
212 | Parameters.Add(new FixedValueParameter<IntValue>(MaximumPretuningParameterOptimizationIterationsParameterName, "The maximum number of iterations for optimization of parameters of individual equations for numerical derivatives (using L-BFGS). More iterations makes the algorithm slower, fewer iterations might prevent convergence in the optimization scheme. Default = 100", new IntValue(100)));
|
---|
213 | Parameters.Add(new FixedValueParameter<IntValue>(MaximumOdeParameterOptimizationIterationsParameterName, "The maximum number of iterations for optimization of the full ODE parameters (using L-BFGS). More iterations makes the algorithm slower, fewer iterations might prevent convergence in the optimization scheme. Default = 100", new IntValue(100)));
|
---|
214 | Parameters.Add(new FixedValueParameter<IntValue>(NumberOfLatentVariablesParameterName, "Latent variables (unobserved variables) allow us to produce expressions which are integrated up and can be used in other expressions. They are handled similarly to target variables in forward simulation / integration. The difference to target variables is that there are no data to which the calculated values of latent variables are compared. Set to a small value (0 .. 5) as necessary (default = 0)", new IntValue(0)));
|
---|
215 | Parameters.Add(new FixedValueParameter<IntValue>(NumericIntegrationStepsParameterName, "Number of steps in the numeric integration that are taken from one row to the next (set to 1 to 100). More steps makes the algorithm slower, less steps worsens the accuracy of the numeric integration scheme.", new IntValue(10)));
|
---|
216 | Parameters.Add(new ValueParameter<ItemList<IntRange>>(TrainingEpisodesParameterName, "A list of ranges that should be used for training, each range represents an independent episode. This overrides the TrainingSet parameter in ProblemData.", new ItemList<IntRange>()));
|
---|
217 | Parameters.Add(new FixedValueParameter<BoolValue>(OptimizeParametersForEpisodesParameterName, "Flag to select if parameters should be optimized globally or for each episode individually.", new BoolValue(false)));
|
---|
218 | Parameters.Add(new FixedValueParameter<DoubleValue>("Pretuning NMSE weight", "For fitness weighting", new DoubleValue(0.5)));
|
---|
219 | Parameters.Add(new FixedValueParameter<DoubleValue>("ODE NMSE weight", "For fitness weighting", new DoubleValue(0.5)));
|
---|
220 | Parameters.Add(new FixedValueParameter<DoubleValue>("Numeric differences smoothing", "Determines the amount of smoothing for the numeric differences which are calculated for pre-tuning. Values from -8 to 8 are reasonable. Use very low value if the data contains no noise. Default: 2.", new DoubleValue(2.0)));
|
---|
221 |
|
---|
222 | var solversStr = new string[] { "HeuristicLab" /* , "CVODES" */};
|
---|
223 | var solvers = new ItemSet<StringValue>(
|
---|
224 | solversStr.Select(s => new StringValue(s).AsReadOnly())
|
---|
225 | );
|
---|
226 | Parameters.Add(new ConstrainedValueParameter<StringValue>(OdeSolverParameterName, "The solver to use for solving the initial value ODE problems", solvers, solvers.First()));
|
---|
227 |
|
---|
228 | RegisterEventHandlers();
|
---|
229 | InitAllParameters();
|
---|
230 |
|
---|
231 | // TODO: use training range as default training episode
|
---|
232 | // TODO: optimization of starting values for latent variables in CVODES solver
|
---|
233 | // TODO: allow to specify the name for the time variable in the dataset and allow variable step-sizes
|
---|
234 | }
|
---|
235 |
|
---|
236 | public override double Evaluate(Individual individual, IRandom random) {
|
---|
237 | var trees = individual.Values.Select(v => v.Value).OfType<ISymbolicExpressionTree>().ToArray(); // extract all trees from individual
|
---|
238 |
|
---|
239 | var problemData = ProblemData;
|
---|
240 | var targetVars = TargetVariables.CheckedItems.OrderBy(i => i.Index).Select(i => i.Value.Value).ToArray();
|
---|
241 | var latentVariables = Enumerable.Range(1, NumberOfLatentVariables).Select(i => "λ" + i).ToArray(); // TODO: must coincide with the variables which are actually defined in the grammar and also for which we actually have trees
|
---|
242 | if (OptimizeParametersForEpisodes) {
|
---|
243 | throw new NotImplementedException();
|
---|
244 | int eIdx = 0;
|
---|
245 | double totalNMSE = 0.0;
|
---|
246 | int totalSize = 0;
|
---|
247 | foreach (var episode in TrainingEpisodes) {
|
---|
248 | // double[] optTheta;
|
---|
249 | double nmse = OptimizeForEpisodes(trees, problemData, targetVars, latentVariables, random, new[] { episode }, MaximumPretuningParameterOptimizationIterations, NumericIntegrationSteps, OdeSolver, MaximumOdeParameterOptimizationIterations);
|
---|
250 | // individual["OptTheta_" + eIdx] = new DoubleArray(optTheta); // write back optimized parameters so that we can use them in the Analysis method
|
---|
251 | eIdx++;
|
---|
252 | totalNMSE += nmse * episode.Size;
|
---|
253 | totalSize += episode.Size;
|
---|
254 | }
|
---|
255 | return totalNMSE / totalSize;
|
---|
256 | } else {
|
---|
257 | // when no training episodes are specified then we implicitly use the training parition from the problemData
|
---|
258 | var trainingEpisodes = TrainingEpisodes;
|
---|
259 | if (!trainingEpisodes.Any()) {
|
---|
260 | trainingEpisodes = new List<IntRange>();
|
---|
261 | trainingEpisodes.Add((IntRange)ProblemData.TrainingPartition.Clone());
|
---|
262 | }
|
---|
263 | double nmse = OptimizeForEpisodes(trees, problemData, targetVars, latentVariables, random, trainingEpisodes, MaximumPretuningParameterOptimizationIterations, NumericIntegrationSteps, OdeSolver, MaximumOdeParameterOptimizationIterations,
|
---|
264 | PretuningErrorWeight.Value.Value, OdeErrorWeight.Value.Value, NumericDifferencesSmoothing);
|
---|
265 | // individual["OptTheta"] = new DoubleArray(optTheta); // write back optimized parameters so that we can use them in the Analysis method
|
---|
266 | return nmse;
|
---|
267 | }
|
---|
268 | }
|
---|
269 |
|
---|
270 | public static double OptimizeForEpisodes(
|
---|
271 | ISymbolicExpressionTree[] trees,
|
---|
272 | IRegressionProblemData problemData,
|
---|
273 | string[] targetVars,
|
---|
274 | string[] latentVariables,
|
---|
275 | IRandom random,
|
---|
276 | IEnumerable<IntRange> episodes,
|
---|
277 | int maxPretuningParameterOptIterations,
|
---|
278 | int numericIntegrationSteps,
|
---|
279 | string odeSolver,
|
---|
280 | int maxOdeParameterOptIterations,
|
---|
281 | double pretuningErrorWeight = 0.5,
|
---|
282 | double odeErrorWeight = 0.5,
|
---|
283 | double numericDifferencesSmoothing = 2
|
---|
284 | ) {
|
---|
285 |
|
---|
286 |
|
---|
287 |
|
---|
288 | // extract constants from trees (without trees for latent variables)
|
---|
289 | var targetVariableTrees = trees.Take(targetVars.Length).ToArray();
|
---|
290 | var latentVariableTrees = trees.Skip(targetVars.Length).ToArray();
|
---|
291 | var constantNodes = targetVariableTrees.Select(t => t.IterateNodesPrefix().OfType<ConstantTreeNode>().ToArray()).ToArray();
|
---|
292 | var initialTheta = constantNodes.Select(nodes => nodes.Select(n => n.Value).ToArray()).ToArray();
|
---|
293 |
|
---|
294 | // optimize parameters by fitting f(x,y) to calculated differences dy/dt(t)
|
---|
295 | double nmse = pretuningErrorWeight * PreTuneParameters(trees, problemData, targetVars, latentVariables, random, episodes,
|
---|
296 | maxPretuningParameterOptIterations, numericDifferencesSmoothing,
|
---|
297 | initialTheta, out double[] pretunedParameters);
|
---|
298 |
|
---|
299 | // extend parameter vector to include parameters for latent variable trees
|
---|
300 | pretunedParameters = pretunedParameters
|
---|
301 | .Concat(latentVariableTrees
|
---|
302 | .SelectMany(t => t.IterateNodesPrefix().OfType<ConstantTreeNode>().Select(n => n.Value)))
|
---|
303 | .ToArray();
|
---|
304 |
|
---|
305 | // optimize parameters using integration of f(x,y) to calculate y(t)
|
---|
306 | nmse += odeErrorWeight * OptimizeParameters(trees, problemData, targetVars, latentVariables, episodes, maxOdeParameterOptIterations, pretunedParameters, numericIntegrationSteps, odeSolver,
|
---|
307 | out double[] optTheta);
|
---|
308 | // var optTheta = pretunedParameters;
|
---|
309 |
|
---|
310 | if (double.IsNaN(nmse) ||
|
---|
311 | double.IsInfinity(nmse) ||
|
---|
312 | nmse > 100 * trees.Length * episodes.Sum(ep => ep.Size))
|
---|
313 | return 100 * trees.Length * episodes.Sum(ep => ep.Size);
|
---|
314 |
|
---|
315 | // update tree nodes with optimized values
|
---|
316 | var paramIdx = 0;
|
---|
317 | for (var treeIdx = 0; treeIdx < constantNodes.Length; treeIdx++) {
|
---|
318 | for (int i = 0; i < constantNodes[treeIdx].Length; i++)
|
---|
319 | constantNodes[treeIdx][i].Value = optTheta[paramIdx++];
|
---|
320 | }
|
---|
321 | return nmse;
|
---|
322 | }
|
---|
323 |
|
---|
324 | private static double PreTuneParameters(
|
---|
325 | ISymbolicExpressionTree[] trees,
|
---|
326 | IRegressionProblemData problemData,
|
---|
327 | string[] targetVars,
|
---|
328 | string[] latentVariables,
|
---|
329 | IRandom random,
|
---|
330 | IEnumerable<IntRange> episodes,
|
---|
331 | int maxParameterOptIterations,
|
---|
332 | double numericDifferencesSmoothing, // for smoothing of numeric differences
|
---|
333 | double[][] initialTheta,
|
---|
334 | out double[] optTheta) {
|
---|
335 | var thetas = new List<double>();
|
---|
336 | double nmse = 0.0;
|
---|
337 | var maxTreeNmse = 100 * episodes.Sum(ep => ep.Size);
|
---|
338 |
|
---|
339 | var targetTrees = trees.Take(targetVars.Length).ToArray();
|
---|
340 | var latentTrees = trees.Take(latentVariables.Length).ToArray();
|
---|
341 |
|
---|
342 | // first calculate values of latent variables by integration
|
---|
343 | if (latentVariables.Length > 0) {
|
---|
344 | var inputVariables = targetVars.Concat(latentTrees.SelectMany(t => t.IterateNodesPrefix().OfType<VariableTreeNode>().Select(n => n.VariableName))).Except(latentVariables).Distinct();
|
---|
345 | var myState = new OptimizationData(latentTrees, targetVars, inputVariables.ToArray(), problemData, null, episodes.ToArray(), 10, latentVariables, "HeuristicLab");
|
---|
346 |
|
---|
347 | var fi = new double[myState.rows.Length * targetVars.Length];
|
---|
348 | var jac = new double[myState.rows.Length * targetVars.Length, myState.nodeValueLookup.ParameterCount];
|
---|
349 | var latentValues = new double[myState.rows.Length, latentVariables.Length];
|
---|
350 | Integrate(myState, fi, jac, latentValues);
|
---|
351 |
|
---|
352 | // add integrated latent variables to dataset
|
---|
353 | var modifiedDataset = ((Dataset)problemData.Dataset).ToModifiable();
|
---|
354 | foreach (var variable in latentVariables) {
|
---|
355 | modifiedDataset.AddVariable(variable, Enumerable.Repeat(0.0, modifiedDataset.Rows).ToList()); // empty column
|
---|
356 | }
|
---|
357 | int predIdx = 0;
|
---|
358 | foreach (var ep in episodes) {
|
---|
359 | for (int r = ep.Start; r < ep.End; r++) {
|
---|
360 | for (int latVarIdx = 0; latVarIdx < latentVariables.Length; latVarIdx++) {
|
---|
361 | modifiedDataset.SetVariableValue(latentValues[predIdx, latVarIdx], latentVariables[latVarIdx], r);
|
---|
362 | }
|
---|
363 | predIdx++;
|
---|
364 | }
|
---|
365 | }
|
---|
366 |
|
---|
367 | problemData = new RegressionProblemData(modifiedDataset, problemData.AllowedInputVariables, problemData.TargetVariable);
|
---|
368 | }
|
---|
369 | // NOTE: the order of values in parameter matches prefix order of constant nodes in trees
|
---|
370 | for (int treeIdx = 0; treeIdx < targetTrees.Length; treeIdx++) {
|
---|
371 | var t = targetTrees[treeIdx];
|
---|
372 |
|
---|
373 | var targetValuesDiff = new List<double>();
|
---|
374 | foreach (var ep in episodes) {
|
---|
375 | var episodeRows = Enumerable.Range(ep.Start, ep.Size);
|
---|
376 | var targetValues = problemData.Dataset.GetDoubleValues(targetVars[treeIdx], episodeRows).ToArray();
|
---|
377 | targetValuesDiff.AddRange(CalculateDifferences(targetValues, numericDifferencesSmoothing));
|
---|
378 | }
|
---|
379 | var adjustedEpisodes = episodes.Select(ep => new IntRange(ep.Start, ep.End));
|
---|
380 |
|
---|
381 | // data for input variables is assumed to be known
|
---|
382 | // input variables in pretuning are all target variables and all variable names that occur in the tree
|
---|
383 | var inputVariables = targetVars.Concat(t.IterateNodesPrefix().OfType<VariableTreeNode>().Select(n => n.VariableName)).Distinct();
|
---|
384 |
|
---|
385 | var myState = new OptimizationData(new[] { t },
|
---|
386 | targetVars,
|
---|
387 | inputVariables.ToArray(),
|
---|
388 | problemData, new[] { targetValuesDiff.ToArray() }, adjustedEpisodes.ToArray(), -99, latentVariables, string.Empty); // TODO
|
---|
389 | var paramCount = myState.nodeValueLookup.ParameterCount;
|
---|
390 |
|
---|
391 | optTheta = initialTheta[treeIdx];
|
---|
392 | if (initialTheta[treeIdx].Length > 0 && maxParameterOptIterations > -1) {
|
---|
393 | try {
|
---|
394 | alglib.minlmstate state;
|
---|
395 | alglib.minlmreport report;
|
---|
396 | var p = new double[initialTheta[treeIdx].Length];
|
---|
397 | var lowerBounds = Enumerable.Repeat(-1000.0, p.Length).ToArray();
|
---|
398 | var upperBounds = Enumerable.Repeat(1000.0, p.Length).ToArray();
|
---|
399 | Array.Copy(initialTheta[treeIdx], p, p.Length);
|
---|
400 | alglib.minlmcreatevj(targetValuesDiff.Count, p, out state);
|
---|
401 | alglib.minlmsetcond(state, 0.0, 0.0, 0.0, maxParameterOptIterations);
|
---|
402 | alglib.minlmsetbc(state, lowerBounds, upperBounds);
|
---|
403 | #if DEBUG
|
---|
404 | //alglib.minlmsetgradientcheck(state, 1.0e-7);
|
---|
405 | #endif
|
---|
406 | alglib.minlmoptimize(state, EvaluateObjectiveVector, EvaluateObjectiveVectorAndJacobian, null, myState);
|
---|
407 |
|
---|
408 | alglib.minlmresults(state, out optTheta, out report);
|
---|
409 | if (report.terminationtype < 0) {
|
---|
410 | #if DEBUG
|
---|
411 | if (report.terminationtype == -7) throw new InvalidProgramException("gradient calculation fail!");
|
---|
412 | #endif
|
---|
413 | optTheta = initialTheta[treeIdx];
|
---|
414 | }
|
---|
415 | } catch (alglib.alglibexception) {
|
---|
416 | optTheta = initialTheta[treeIdx];
|
---|
417 | }
|
---|
418 | }
|
---|
419 | var tree_nmse = EvaluateMSE(optTheta, myState);
|
---|
420 | if (double.IsNaN(tree_nmse) || double.IsInfinity(tree_nmse) || tree_nmse > maxTreeNmse) {
|
---|
421 | nmse += maxTreeNmse;
|
---|
422 | thetas.AddRange(initialTheta[treeIdx]);
|
---|
423 | } else {
|
---|
424 | nmse += tree_nmse;
|
---|
425 | thetas.AddRange(optTheta);
|
---|
426 | }
|
---|
427 | } // foreach tree
|
---|
428 | optTheta = thetas.ToArray();
|
---|
429 |
|
---|
430 | return nmse;
|
---|
431 | }
|
---|
432 |
|
---|
433 |
|
---|
434 |
|
---|
435 | // similar to above but this time we integrate and optimize all parameters for all targets concurrently
|
---|
436 | private static double OptimizeParameters(ISymbolicExpressionTree[] trees, IRegressionProblemData problemData, string[] targetVars, string[] latentVariables,
|
---|
437 | IEnumerable<IntRange> episodes, int maxParameterOptIterations, double[] initialTheta, int numericIntegrationSteps, string odeSolver, out double[] optTheta) {
|
---|
438 | var rowsForDataExtraction = episodes.SelectMany(e => Enumerable.Range(e.Start, e.Size)).ToArray();
|
---|
439 | var targetValues = new double[targetVars.Length][];
|
---|
440 | for (int treeIdx = 0; treeIdx < targetVars.Length; treeIdx++) {
|
---|
441 | var t = trees[treeIdx];
|
---|
442 |
|
---|
443 | targetValues[treeIdx] = problemData.Dataset.GetDoubleValues(targetVars[treeIdx], rowsForDataExtraction).ToArray();
|
---|
444 | }
|
---|
445 |
|
---|
446 | // data for input variables is assumed to be known
|
---|
447 | // input variables are all variable names that occur in the trees except for target variables (we assume that trees have been generated correctly)
|
---|
448 | var inputVariables = trees.SelectMany(t => t.IterateNodesPrefix().OfType<VariableTreeNode>().Select(n => n.VariableName))
|
---|
449 | .Except(targetVars)
|
---|
450 | .Except(latentVariables)
|
---|
451 | .Distinct();
|
---|
452 |
|
---|
453 | var myState = new OptimizationData(trees, targetVars, inputVariables.ToArray(), problemData, targetValues, episodes.ToArray(), numericIntegrationSteps, latentVariables, odeSolver);
|
---|
454 | optTheta = initialTheta;
|
---|
455 |
|
---|
456 | if (initialTheta.Length > 0 && maxParameterOptIterations > -1) {
|
---|
457 | var lowerBounds = Enumerable.Repeat(-1000.0, initialTheta.Length).ToArray();
|
---|
458 | var upperBounds = Enumerable.Repeat(1000.0, initialTheta.Length).ToArray();
|
---|
459 | try {
|
---|
460 | alglib.minlmstate state;
|
---|
461 | alglib.minlmreport report;
|
---|
462 | alglib.minlmcreatevj(rowsForDataExtraction.Length * trees.Length, initialTheta, out state);
|
---|
463 | alglib.minlmsetbc(state, lowerBounds, upperBounds);
|
---|
464 | alglib.minlmsetcond(state, 0.0, 0.0, 0.0, maxParameterOptIterations);
|
---|
465 | #if DEBUG
|
---|
466 | //alglib.minlmsetgradientcheck(state, 1.0e-7);
|
---|
467 | #endif
|
---|
468 | alglib.minlmoptimize(state, IntegrateAndEvaluateObjectiveVector, IntegrateAndEvaluateObjectiveVectorAndJacobian, null, myState);
|
---|
469 |
|
---|
470 | alglib.minlmresults(state, out optTheta, out report);
|
---|
471 |
|
---|
472 | if (report.terminationtype < 0) {
|
---|
473 | #if DEBUG
|
---|
474 | if (report.terminationtype == -7) throw new InvalidProgramException("gradient calculation fail!");
|
---|
475 | #endif // there was a problem: reset theta and evaluate for inital values
|
---|
476 | optTheta = initialTheta;
|
---|
477 | }
|
---|
478 | } catch (alglib.alglibexception) {
|
---|
479 | optTheta = initialTheta;
|
---|
480 | }
|
---|
481 | }
|
---|
482 | var nmse = EvaluateIntegratedMSE(optTheta, myState);
|
---|
483 | var maxNmse = 100 * targetValues.Length * rowsForDataExtraction.Length;
|
---|
484 | if (double.IsNaN(nmse) || double.IsInfinity(nmse) || nmse > maxNmse) nmse = maxNmse;
|
---|
485 | return nmse;
|
---|
486 | }
|
---|
487 |
|
---|
488 |
|
---|
489 | // helper
|
---|
490 | public static double EvaluateMSE(double[] x, OptimizationData optimizationData) {
|
---|
491 | var fi = new double[optimizationData.rows.Count()];
|
---|
492 | EvaluateObjectiveVector(x, fi, optimizationData);
|
---|
493 | return fi.Sum(fii => fii * fii) / fi.Length;
|
---|
494 | }
|
---|
495 | public static void EvaluateObjectiveVector(double[] x, double[] fi, object optimizationData) { EvaluateObjectiveVector(x, fi, (OptimizationData)optimizationData); } // for alglib
|
---|
496 | public static void EvaluateObjectiveVector(double[] x, double[] fi, OptimizationData optimizationData) {
|
---|
497 | var rows = optimizationData.rows;
|
---|
498 | var problemData = optimizationData.problemData;
|
---|
499 | var nodeValueLookup = optimizationData.nodeValueLookup;
|
---|
500 | var ds = problemData.Dataset;
|
---|
501 | var variables = optimizationData.variables;
|
---|
502 |
|
---|
503 | nodeValueLookup.UpdateParamValues(x);
|
---|
504 |
|
---|
505 | int outputIdx = 0;
|
---|
506 | for (int trainIdx = 0; trainIdx < rows.Length; trainIdx++) {
|
---|
507 | // update variable values
|
---|
508 | foreach (var variable in variables) {
|
---|
509 | // in this problem we also allow fixed numeric parameters (represented as variables with the value as name)
|
---|
510 | if (double.TryParse(variable, NumberStyles.Float, CultureInfo.InvariantCulture, out double value)) {
|
---|
511 | nodeValueLookup.SetVariableValue(variable, value); // TODO: Perf we don't need to set this for each index
|
---|
512 | } else {
|
---|
513 | nodeValueLookup.SetVariableValue(variable, ds.GetDoubleValue(variable, rows[trainIdx])); // TODO: perf
|
---|
514 | }
|
---|
515 | }
|
---|
516 | // interpret all trees
|
---|
517 | for (int treeIdx = 0; treeIdx < optimizationData.trees.Length; treeIdx++) {
|
---|
518 | var tree = optimizationData.trees[treeIdx];
|
---|
519 | var pred = InterpretRec(tree.Root.GetSubtree(0).GetSubtree(0), nodeValueLookup);
|
---|
520 | var y = optimizationData.targetValues[treeIdx][trainIdx];
|
---|
521 | fi[outputIdx++] = (y - pred) * optimizationData.inverseStandardDeviation[treeIdx];
|
---|
522 | }
|
---|
523 | }
|
---|
524 | }
|
---|
525 |
|
---|
526 | public static void EvaluateObjectiveVectorAndJacobian(double[] x, double[] fi, double[,] jac, object optimizationData) { EvaluateObjectiveVectorAndJacobian(x, fi, jac, (OptimizationData)optimizationData); } // for alglib
|
---|
527 | public static void EvaluateObjectiveVectorAndJacobian(double[] x, double[] fi, double[,] jac, OptimizationData optimizationData) {
|
---|
528 | // extract variable values from dataset
|
---|
529 | var variableValues = new Dictionary<string, Tuple<double, Vector>>();
|
---|
530 | var problemData = optimizationData.problemData;
|
---|
531 | var ds = problemData.Dataset;
|
---|
532 | var rows = optimizationData.rows;
|
---|
533 | var variables = optimizationData.variables;
|
---|
534 |
|
---|
535 | var nodeValueLookup = optimizationData.nodeValueLookup;
|
---|
536 | nodeValueLookup.UpdateParamValues(x);
|
---|
537 |
|
---|
538 | int termIdx = 0;
|
---|
539 |
|
---|
540 | for (int trainIdx = 0; trainIdx < rows.Length; trainIdx++) {
|
---|
541 | // update variable values
|
---|
542 | foreach (var variable in variables) {
|
---|
543 | // in this problem we also allow fixed numeric parameters (represented as variables with the value as name)
|
---|
544 | if (double.TryParse(variable, NumberStyles.Float, CultureInfo.InvariantCulture, out double value)) {
|
---|
545 | nodeValueLookup.SetVariableValue(variable, value); // TODO: Perf we don't need to set this for each index
|
---|
546 | } else {
|
---|
547 | nodeValueLookup.SetVariableValue(variable, ds.GetDoubleValue(variable, rows[trainIdx])); // TODO: perf
|
---|
548 | }
|
---|
549 | }
|
---|
550 |
|
---|
551 | var calculatedVariables = optimizationData.targetVariables;
|
---|
552 |
|
---|
553 | var trees = optimizationData.trees;
|
---|
554 | for (int i = 0; i < trees.Length; i++) {
|
---|
555 | var tree = trees[i];
|
---|
556 | var targetVarName = calculatedVariables[i];
|
---|
557 |
|
---|
558 | double f; Vector g;
|
---|
559 | InterpretRec(tree.Root.GetSubtree(0).GetSubtree(0), nodeValueLookup, out f, out g);
|
---|
560 |
|
---|
561 | var y = optimizationData.targetValues[i][trainIdx];
|
---|
562 | fi[termIdx] = (y - f) * optimizationData.inverseStandardDeviation[i]; // scale of NMSE
|
---|
563 | if (jac != null && g != Vector.Zero) for (int j = 0; j < g.Length; j++) jac[termIdx, j] = -g[j] * optimizationData.inverseStandardDeviation[i];
|
---|
564 |
|
---|
565 | termIdx++;
|
---|
566 | }
|
---|
567 | }
|
---|
568 |
|
---|
569 | }
|
---|
570 |
|
---|
571 | // helper
|
---|
572 | public static double EvaluateIntegratedMSE(double[] x, OptimizationData optimizationData) {
|
---|
573 | var fi = new double[optimizationData.rows.Count() * optimizationData.targetVariables.Length];
|
---|
574 | IntegrateAndEvaluateObjectiveVector(x, fi, optimizationData);
|
---|
575 | return fi.Sum(fii => fii * fii) / fi.Length;
|
---|
576 | }
|
---|
577 | public static void IntegrateAndEvaluateObjectiveVector(double[] x, double[] fi, object optimizationData) { IntegrateAndEvaluateObjectiveVector(x, fi, (OptimizationData)optimizationData); } // for alglib
|
---|
578 | public static void IntegrateAndEvaluateObjectiveVector(double[] x, double[] fi, OptimizationData optimizationData) {
|
---|
579 | IntegrateAndEvaluateObjectiveVectorAndJacobian(x, fi, null, optimizationData);
|
---|
580 | }
|
---|
581 |
|
---|
582 | public static void IntegrateAndEvaluateObjectiveVectorAndJacobian(double[] x, double[] fi, double[,] jac, object optimizationData) { IntegrateAndEvaluateObjectiveVectorAndJacobian(x, fi, jac, (OptimizationData)optimizationData); } // for alglib
|
---|
583 | public static void IntegrateAndEvaluateObjectiveVectorAndJacobian(double[] x, double[] fi, double[,] jac, OptimizationData optimizationData) {
|
---|
584 | var rows = optimizationData.rows.ToArray();
|
---|
585 | var problemData = optimizationData.problemData;
|
---|
586 | var nodeValueLookup = optimizationData.nodeValueLookup;
|
---|
587 | var ds = problemData.Dataset;
|
---|
588 | int outputIdx = 0;
|
---|
589 |
|
---|
590 | nodeValueLookup.UpdateParamValues(x);
|
---|
591 |
|
---|
592 | Integrate(optimizationData, fi, jac, null);
|
---|
593 | var trees = optimizationData.trees;
|
---|
594 |
|
---|
595 | // update result with error
|
---|
596 | for (int trainIdx = 0; trainIdx < rows.Length; trainIdx++) {
|
---|
597 | for (int i = 0; i < optimizationData.targetVariables.Length; i++) {
|
---|
598 | var tree = trees[i];
|
---|
599 | var y = optimizationData.targetValues[i][trainIdx];
|
---|
600 | fi[outputIdx] = (y - fi[outputIdx]) * optimizationData.inverseStandardDeviation[i]; // scale for normalized squared error
|
---|
601 | if (jac != null) for (int j = 0; j < x.Length; j++) jac[outputIdx, j] = -jac[outputIdx, j] * optimizationData.inverseStandardDeviation[i];
|
---|
602 | outputIdx++;
|
---|
603 | }
|
---|
604 | }
|
---|
605 | }
|
---|
606 |
|
---|
607 | public override void Analyze(Individual[] individuals, double[] qualities, ResultCollection results, IRandom random) {
|
---|
608 | base.Analyze(individuals, qualities, results, random);
|
---|
609 |
|
---|
610 | if (!results.ContainsKey("Prediction (training)")) {
|
---|
611 | results.Add(new Result("Prediction (training)", typeof(ReadOnlyItemList<DataTable>)));
|
---|
612 | }
|
---|
613 | if (!results.ContainsKey("Prediction (test)")) {
|
---|
614 | results.Add(new Result("Prediction (test)", typeof(ReadOnlyItemList<DataTable>)));
|
---|
615 | }
|
---|
616 | if (!results.ContainsKey("Models")) {
|
---|
617 | results.Add(new Result("Models", typeof(VariableCollection)));
|
---|
618 | }
|
---|
619 | if (!results.ContainsKey("SNMSE")) {
|
---|
620 | results.Add(new Result("SNMSE", typeof(DoubleValue)));
|
---|
621 | }
|
---|
622 | if(!results.ContainsKey("SNMSE values")) {
|
---|
623 | var dt = new DataTable("SNMSE values");
|
---|
624 | dt.Rows.Add(new DataRow("ODE SNMSE"));
|
---|
625 | dt.Rows.Add(new DataRow("Fitness"));
|
---|
626 | results.Add(new Result("SNMSE values", dt));
|
---|
627 | }
|
---|
628 | if (!results.ContainsKey("Solution")) {
|
---|
629 | results.Add(new Result("Solution", typeof(Solution)));
|
---|
630 | }
|
---|
631 | // if (!results.ContainsKey("Squared error and gradient")) {
|
---|
632 | // results.Add(new Result("Squared error and gradient", typeof(DataTable)));
|
---|
633 | // }
|
---|
634 |
|
---|
635 | // when no training episodes are specified then we implicitly use the training parition from the problemData
|
---|
636 | var trainingEpisodes = TrainingEpisodes;
|
---|
637 | if (!trainingEpisodes.Any()) {
|
---|
638 | trainingEpisodes = new List<IntRange>();
|
---|
639 | trainingEpisodes.Add((IntRange)ProblemData.TrainingPartition.Clone());
|
---|
640 | }
|
---|
641 |
|
---|
642 | var bestIndividualAndQuality = this.GetBestIndividual(individuals, qualities);
|
---|
643 | var trees = bestIndividualAndQuality.Item1.Values.Select(v => v.Value).OfType<ISymbolicExpressionTree>().ToArray(); // extract all trees from individual
|
---|
644 |
|
---|
645 | results["SNMSE"].Value = new DoubleValue(bestIndividualAndQuality.Item2);
|
---|
646 |
|
---|
647 | var problemData = ProblemData;
|
---|
648 | var targetVars = TargetVariables.CheckedItems.OrderBy(i => i.Index).Select(i => i.Value.Value).ToArray();
|
---|
649 | var latentVariables = Enumerable.Range(1, NumberOfLatentVariables).Select(i => "λ" + i).ToArray(); // TODO: must coincide with the variables which are actually defined in the grammar and also for which we actually have trees
|
---|
650 |
|
---|
651 | var trainingList = new ItemList<DataTable>();
|
---|
652 |
|
---|
653 | if (OptimizeParametersForEpisodes) {
|
---|
654 | throw new NotSupportedException();
|
---|
655 | var eIdx = 0;
|
---|
656 | var trainingPredictions = new List<Tuple<double, Vector>[][]>();
|
---|
657 | foreach (var episode in TrainingEpisodes) {
|
---|
658 | var episodes = new[] { episode };
|
---|
659 | var optimizationData = new OptimizationData(trees, targetVars, problemData.AllowedInputVariables.ToArray(), problemData, null, episodes, NumericIntegrationSteps, latentVariables, OdeSolver);
|
---|
660 | var trainingPrediction = Integrate(optimizationData).ToArray();
|
---|
661 | trainingPredictions.Add(trainingPrediction);
|
---|
662 | eIdx++;
|
---|
663 | }
|
---|
664 |
|
---|
665 | // only for target values
|
---|
666 | var trainingRows = TrainingEpisodes.SelectMany(e => Enumerable.Range(e.Start, e.End - e.Start));
|
---|
667 | for (int colIdx = 0; colIdx < targetVars.Length; colIdx++) {
|
---|
668 | var targetVar = targetVars[colIdx];
|
---|
669 | var trainingDataTable = new DataTable(targetVar + " prediction (training)");
|
---|
670 | var actualValuesRow = new DataRow(targetVar, "The values of " + targetVar, problemData.Dataset.GetDoubleValues(targetVar, trainingRows));
|
---|
671 | var predictedValuesRow = new DataRow(targetVar + " pred.", "Predicted values for " + targetVar, trainingPredictions.SelectMany(arr => arr.Select(row => row[colIdx].Item1)).ToArray());
|
---|
672 | trainingDataTable.Rows.Add(actualValuesRow);
|
---|
673 | trainingDataTable.Rows.Add(predictedValuesRow);
|
---|
674 | trainingList.Add(trainingDataTable);
|
---|
675 | }
|
---|
676 | results["Prediction (training)"].Value = trainingList.AsReadOnly();
|
---|
677 |
|
---|
678 |
|
---|
679 | var models = new VariableCollection();
|
---|
680 |
|
---|
681 | foreach (var tup in targetVars.Zip(trees, Tuple.Create)) {
|
---|
682 | var targetVarName = tup.Item1;
|
---|
683 | var tree = tup.Item2;
|
---|
684 |
|
---|
685 | var origTreeVar = new HeuristicLab.Core.Variable(targetVarName + "(original)");
|
---|
686 | origTreeVar.Value = (ISymbolicExpressionTree)tree.Clone();
|
---|
687 | models.Add(origTreeVar);
|
---|
688 | }
|
---|
689 | results["Models"].Value = models;
|
---|
690 | } else {
|
---|
691 | // data for input variables is assumed to be known
|
---|
692 | // input variables are all variable names that occur in the trees except for target variables (we assume that trees have been generated correctly)
|
---|
693 | var inputVariables = trees
|
---|
694 | .SelectMany(t => t.IterateNodesPrefix().OfType<VariableTreeNode>().Select(n => n.VariableName))
|
---|
695 | .Except(targetVars)
|
---|
696 | .Except(latentVariables)
|
---|
697 | .Distinct();
|
---|
698 |
|
---|
699 | var optimizationData = new OptimizationData(trees, targetVars, inputVariables.ToArray(), problemData, null, trainingEpisodes.ToArray(), NumericIntegrationSteps, latentVariables, OdeSolver);
|
---|
700 | var numParams = optimizationData.nodeValueLookup.ParameterCount;
|
---|
701 |
|
---|
702 | var fi = new double[optimizationData.rows.Length * targetVars.Length];
|
---|
703 | var jac = new double[optimizationData.rows.Length * targetVars.Length, numParams];
|
---|
704 | var latentValues = new double[optimizationData.rows.Length, latentVariables.Length];
|
---|
705 | Integrate(optimizationData, fi, jac, latentValues);
|
---|
706 |
|
---|
707 |
|
---|
708 | // for target values and latent variables
|
---|
709 | var trainingRows = optimizationData.rows;
|
---|
710 | double trainingSNMSE = 0.0;
|
---|
711 | for (int colIdx = 0; colIdx < trees.Length; colIdx++) {
|
---|
712 | // is target variable
|
---|
713 | if (colIdx < targetVars.Length) {
|
---|
714 | var targetVar = targetVars[colIdx];
|
---|
715 | var trainingDataTable = new DataTable(targetVar + " prediction (training)");
|
---|
716 | var actualValuesRow = new DataRow(targetVar, "The values of " + targetVar, problemData.Dataset.GetDoubleValues(targetVar, trainingRows));
|
---|
717 | var idx = Enumerable.Range(0, trainingRows.Length).Select(i => i * targetVars.Length + colIdx);
|
---|
718 | var pred = idx.Select(i => fi[i]);
|
---|
719 | var predictedValuesRow = new DataRow(targetVar + " pred.", "Predicted values for " + targetVar, pred.ToArray());
|
---|
720 | trainingDataTable.Rows.Add(actualValuesRow);
|
---|
721 | trainingDataTable.Rows.Add(predictedValuesRow);
|
---|
722 |
|
---|
723 | // again calculate the integrated error (regardless how fitness is determined)
|
---|
724 | trainingSNMSE += actualValuesRow.Values.Zip(predictedValuesRow.Values, (a, p) => Math.Pow(a - p, 2)).Average() / actualValuesRow.Values.Variance() / targetVars.Length;
|
---|
725 |
|
---|
726 | for (int paramIdx = 0; paramIdx < numParams; paramIdx++) {
|
---|
727 | var paramSensitivityRow = new DataRow($"∂{targetVar}/∂θ{paramIdx}", $"Sensitivities of parameter {paramIdx}", idx.Select(i => jac[i, paramIdx]).ToArray());
|
---|
728 | paramSensitivityRow.VisualProperties.SecondYAxis = true;
|
---|
729 | trainingDataTable.Rows.Add(paramSensitivityRow);
|
---|
730 | }
|
---|
731 | trainingList.Add(trainingDataTable);
|
---|
732 | } else {
|
---|
733 | var latentVar = latentVariables[colIdx - targetVars.Length];
|
---|
734 | var trainingDataTable = new DataTable(latentVar + " prediction (training)");
|
---|
735 | var idx = Enumerable.Range(0, trainingRows.Length);
|
---|
736 | var pred = idx.Select(i => latentValues[i, colIdx - targetVars.Length]);
|
---|
737 | var predictedValuesRow = new DataRow(latentVar + " pred.", "Predicted values for " + latentVar, pred.ToArray());
|
---|
738 | var emptyRow = new DataRow(latentVar);
|
---|
739 | trainingDataTable.Rows.Add(emptyRow);
|
---|
740 | trainingDataTable.Rows.Add(predictedValuesRow);
|
---|
741 | trainingList.Add(trainingDataTable);
|
---|
742 | }
|
---|
743 | }
|
---|
744 |
|
---|
745 | results.AddOrUpdateResult("ODE SNMSE", new DoubleValue(trainingSNMSE));
|
---|
746 | var odeSNMSETable = (DataTable)results["SNMSE values"].Value;
|
---|
747 | odeSNMSETable.Rows["ODE SNMSE"].Values.Add(trainingSNMSE);
|
---|
748 | odeSNMSETable.Rows["Fitness"].Values.Add(bestIndividualAndQuality.Item2);
|
---|
749 |
|
---|
750 | // var errorTable = new DataTable("Squared error and gradient");
|
---|
751 | // var seRow = new DataRow("Squared error");
|
---|
752 | // var gradientRows = Enumerable.Range(0, numParams).Select(i => new DataRow($"∂SE/∂θ{i}")).ToArray();
|
---|
753 | // errorTable.Rows.Add(seRow);
|
---|
754 | // foreach (var gRow in gradientRows) {
|
---|
755 | // gRow.VisualProperties.SecondYAxis = true;
|
---|
756 | // errorTable.Rows.Add(gRow);
|
---|
757 | // }
|
---|
758 | // var targetValues = targetVars.Select(v => problemData.Dataset.GetDoubleValues(v, trainingRows).ToArray()).ToArray();
|
---|
759 | // int r = 0;
|
---|
760 |
|
---|
761 | // foreach (var y_pred in fi) {
|
---|
762 | // // calculate objective function gradient
|
---|
763 | // double f_i = 0.0;
|
---|
764 | // Vector g_i = Vector.CreateNew(new double[numParams]);
|
---|
765 | // for (int colIdx = 0; colIdx < targetVars.Length; colIdx++) {
|
---|
766 | // var y_pred_f = y_pred[colIdx].Item1;
|
---|
767 | // var y = targetValues[colIdx][r];
|
---|
768 | //
|
---|
769 | // var res = (y - y_pred_f) * optimizationData.inverseStandardDeviation[colIdx];
|
---|
770 | // var ressq = res * res;
|
---|
771 | // f_i += ressq;
|
---|
772 | // g_i.Add(y_pred[colIdx].Item2.Scale(-2.0 * res));
|
---|
773 | // }
|
---|
774 | // seRow.Values.Add(f_i);
|
---|
775 | // for (int j = 0; j < g_i.Length; j++) gradientRows[j].Values.Add(g_i[j]);
|
---|
776 | // r++;
|
---|
777 | // }
|
---|
778 | // results["Squared error and gradient"].Value = errorTable;
|
---|
779 |
|
---|
780 | // only if there is a non-empty test partition
|
---|
781 | if (ProblemData.TestIndices.Any()) {
|
---|
782 | // TODO: DRY for training and test
|
---|
783 |
|
---|
784 | var testList = new ItemList<DataTable>();
|
---|
785 | var testRows = ProblemData.TestIndices.ToArray();
|
---|
786 | var testOptimizationData = new OptimizationData(trees, targetVars, problemData.AllowedInputVariables.ToArray(), problemData, null, new IntRange[] { ProblemData.TestPartition }, NumericIntegrationSteps, latentVariables, OdeSolver);
|
---|
787 | var testPrediction = Integrate(testOptimizationData).ToArray();
|
---|
788 |
|
---|
789 | for (int colIdx = 0; colIdx < trees.Length; colIdx++) {
|
---|
790 | // is target variable
|
---|
791 | if (colIdx < targetVars.Length) {
|
---|
792 | var targetVar = targetVars[colIdx];
|
---|
793 | var testDataTable = new DataTable(targetVar + " prediction (test)");
|
---|
794 | var actualValuesRow = new DataRow(targetVar, "The values of " + targetVar, problemData.Dataset.GetDoubleValues(targetVar, testRows));
|
---|
795 | var predictedValuesRow = new DataRow(targetVar + " pred.", "Predicted values for " + targetVar, testPrediction.Select(arr => arr[colIdx].Item1).ToArray());
|
---|
796 | testDataTable.Rows.Add(actualValuesRow);
|
---|
797 | testDataTable.Rows.Add(predictedValuesRow);
|
---|
798 | testList.Add(testDataTable);
|
---|
799 |
|
---|
800 | } else {
|
---|
801 | // var latentVar = latentVariables[colIdx - targetVars.Length];
|
---|
802 | // var testDataTable = new DataTable(latentVar + " prediction (test)");
|
---|
803 | // var predictedValuesRow = new DataRow(latentVar + " pred.", "Predicted values for " + latentVar, testPrediction.Select(arr => arr[colIdx].Item1).ToArray());
|
---|
804 | // var emptyRow = new DataRow(latentVar);
|
---|
805 | // testDataTable.Rows.Add(emptyRow);
|
---|
806 | // testDataTable.Rows.Add(predictedValuesRow);
|
---|
807 | // testList.Add(testDataTable);
|
---|
808 | }
|
---|
809 | }
|
---|
810 |
|
---|
811 | results["Prediction (training)"].Value = trainingList.AsReadOnly();
|
---|
812 | results["Prediction (test)"].Value = testList.AsReadOnly();
|
---|
813 |
|
---|
814 | }
|
---|
815 |
|
---|
816 | #region simplification of models
|
---|
817 | // TODO the dependency of HeuristicLab.Problems.DataAnalysis.Symbolic is not ideal
|
---|
818 | var models = new VariableCollection(); // to store target var names and original version of tree
|
---|
819 |
|
---|
820 | var clonedTrees = new List<ISymbolicExpressionTree>();
|
---|
821 | for (int idx = 0; idx < trees.Length; idx++) {
|
---|
822 | clonedTrees.Add((ISymbolicExpressionTree)trees[idx].Clone());
|
---|
823 | }
|
---|
824 | var ds = problemData.Dataset;
|
---|
825 | var newProblemData = new RegressionProblemData((IDataset)ds.Clone(), problemData.AllowedInputVariables, problemData.TargetVariable);
|
---|
826 | results["Solution"].Value = new Solution(clonedTrees.ToArray(),
|
---|
827 | // optTheta,
|
---|
828 | newProblemData,
|
---|
829 | targetVars,
|
---|
830 | latentVariables,
|
---|
831 | trainingEpisodes,
|
---|
832 | OdeSolver,
|
---|
833 | NumericIntegrationSteps);
|
---|
834 |
|
---|
835 |
|
---|
836 | for (int idx = 0; idx < trees.Length; idx++) {
|
---|
837 | var varName = string.Empty;
|
---|
838 | if (idx < targetVars.Length) {
|
---|
839 | varName = targetVars[idx];
|
---|
840 | } else {
|
---|
841 | varName = latentVariables[idx - targetVars.Length];
|
---|
842 | }
|
---|
843 | var tree = trees[idx];
|
---|
844 |
|
---|
845 | var origTreeVar = new HeuristicLab.Core.Variable(varName + "(original)");
|
---|
846 | origTreeVar.Value = (ISymbolicExpressionTree)tree.Clone();
|
---|
847 | models.Add(origTreeVar);
|
---|
848 | var simplifiedTreeVar = new HeuristicLab.Core.Variable(varName + "(simplified)");
|
---|
849 | simplifiedTreeVar.Value = TreeSimplifier.Simplify(tree);
|
---|
850 | models.Add(simplifiedTreeVar);
|
---|
851 | }
|
---|
852 |
|
---|
853 | results["Models"].Value = models;
|
---|
854 | #endregion
|
---|
855 |
|
---|
856 | #region produce classical solutions to allow visualization with PDP
|
---|
857 | for (int treeIdx = 0; treeIdx < targetVars.Length; treeIdx++) {
|
---|
858 | var t = (ISymbolicExpressionTree)trees[treeIdx].Clone();
|
---|
859 | var name = targetVars.Concat(latentVariables).ElementAt(treeIdx); // whatever
|
---|
860 | var model = new SymbolicRegressionModel(name + "_diff", t, new SymbolicDataAnalysisExpressionTreeLinearInterpreter());
|
---|
861 | var solutionDataset = ((Dataset)problemData.Dataset).ToModifiable();
|
---|
862 | var absValues = solutionDataset.GetDoubleValues(name).ToArray();
|
---|
863 |
|
---|
864 | solutionDataset.AddVariable(name + "_diff", CalculateDifferences(absValues, NumericDifferencesSmoothing).ToList());
|
---|
865 | var solutionProblemData = new RegressionProblemData(solutionDataset, problemData.AllowedInputVariables, name + "_diff");
|
---|
866 | solutionProblemData.TrainingPartition.Start = problemData.TrainingPartition.Start;
|
---|
867 | solutionProblemData.TrainingPartition.End = problemData.TrainingPartition.End;
|
---|
868 | solutionProblemData.TestPartition.Start = problemData.TestPartition.Start;
|
---|
869 | solutionProblemData.TestPartition.End = problemData.TestPartition.End;
|
---|
870 | var solution = model.CreateRegressionSolution(solutionProblemData);
|
---|
871 | results.AddOrUpdateResult("Solution " + name, solution);
|
---|
872 | }
|
---|
873 | #endregion
|
---|
874 | }
|
---|
875 | }
|
---|
876 |
|
---|
877 | #region interpretation
|
---|
878 |
|
---|
879 | // the following uses auto-diff to calculate the gradient w.r.t. the parameters forward in time.
|
---|
880 | // this is basically the method described in Gronwall T. Note on the derivatives with respect to a parameter of the solutions of a system of differential equations. Ann. Math. 1919;20:292–296.
|
---|
881 |
|
---|
882 | // a comparison of three potential calculation methods for the gradient is given in:
|
---|
883 | // Sengupta, B., Friston, K. J., & Penny, W. D. (2014). Efficient gradient computation for dynamical models. Neuroimage, 98(100), 521–527. http://doi.org/10.1016/j.neuroimage.2014.04.040
|
---|
884 | // "Our comparison establishes that the adjoint method is computationally more efficient for numerical estimation of parametric gradients
|
---|
885 | // for state-space models — both linear and non-linear, as in the case of a dynamical causal model (DCM)"
|
---|
886 |
|
---|
887 | // for a solver with the necessary features see: https://computation.llnl.gov/projects/sundials/cvodes
|
---|
888 |
|
---|
889 | public static IEnumerable<Tuple<double, Vector>[]> Integrate(OptimizationData optimizationData) {
|
---|
890 | var nTargets = optimizationData.targetVariables.Length;
|
---|
891 | var n = optimizationData.rows.Length * optimizationData.targetVariables.Length;
|
---|
892 | var d = optimizationData.nodeValueLookup.ParameterCount;
|
---|
893 | double[] fi = new double[n];
|
---|
894 | double[,] jac = new double[n, d];
|
---|
895 | Integrate(optimizationData, fi, jac, null);
|
---|
896 | for (int i = 0; i < optimizationData.rows.Length; i++) {
|
---|
897 | var res = new Tuple<double, Vector>[nTargets];
|
---|
898 | for (int j = 0; j < nTargets; j++) {
|
---|
899 | res[j] = Tuple.Create(fi[i * nTargets + j], Vector.CreateFromMatrixRow(jac, i * nTargets + j));
|
---|
900 | }
|
---|
901 | yield return res;
|
---|
902 | }
|
---|
903 | }
|
---|
904 |
|
---|
905 | public static void Integrate(OptimizationData optimizationData, double[] fi, double[,] jac, double[,] latentValues) {
|
---|
906 | var trees = optimizationData.trees;
|
---|
907 | var dataset = optimizationData.problemData.Dataset;
|
---|
908 | var inputVariables = optimizationData.variables;
|
---|
909 | var targetVariables = optimizationData.targetVariables;
|
---|
910 | var latentVariables = optimizationData.latentVariables;
|
---|
911 | var episodes = optimizationData.episodes;
|
---|
912 | var odeSolver = optimizationData.odeSolver;
|
---|
913 | var numericIntegrationSteps = optimizationData.numericIntegrationSteps;
|
---|
914 | var calculatedVariables = targetVariables.Concat(latentVariables).ToArray(); // TODO: must conincide with the order of trees in the encoding
|
---|
915 |
|
---|
916 |
|
---|
917 |
|
---|
918 | var nodeValues = optimizationData.nodeValueLookup;
|
---|
919 |
|
---|
920 | // TODO: numericIntegrationSteps is only relevant for the HeuristicLab solver
|
---|
921 | var outputRowIdx = 0;
|
---|
922 | var episodeIdx = 0;
|
---|
923 | foreach (var episode in optimizationData.episodes) {
|
---|
924 | var rows = Enumerable.Range(episode.Start, episode.End - episode.Start).ToArray();
|
---|
925 |
|
---|
926 | var t0 = rows.First();
|
---|
927 |
|
---|
928 | // initialize values for inputs and targets from dataset
|
---|
929 | foreach (var varName in inputVariables) {
|
---|
930 | // in this problem we also allow fixed numeric parameters (represented as variables with the value as name)
|
---|
931 | if (double.TryParse(varName, NumberStyles.Float, CultureInfo.InvariantCulture, out double value)) {
|
---|
932 | nodeValues.SetVariableValue(varName, value, Vector.Zero);
|
---|
933 | } else {
|
---|
934 | var y0 = dataset.GetDoubleValue(varName, t0);
|
---|
935 | nodeValues.SetVariableValue(varName, y0, Vector.Zero);
|
---|
936 | }
|
---|
937 | }
|
---|
938 | foreach (var varName in targetVariables) {
|
---|
939 | var y0 = dataset.GetDoubleValue(varName, t0);
|
---|
940 | nodeValues.SetVariableValue(varName, y0, Vector.Zero);
|
---|
941 |
|
---|
942 | // output starting value
|
---|
943 | fi[outputRowIdx] = y0;
|
---|
944 | Vector.Zero.CopyTo(jac, outputRowIdx);
|
---|
945 |
|
---|
946 | outputRowIdx++;
|
---|
947 | }
|
---|
948 |
|
---|
949 | var latentValueRowIdx = 0;
|
---|
950 | var latentValueColIdx = 0;
|
---|
951 | foreach (var varName in latentVariables) {
|
---|
952 | var y0 = 0.0; // assume we start at zero
|
---|
953 | nodeValues.SetVariableValue(varName, y0, Vector.Zero);
|
---|
954 |
|
---|
955 | if (latentValues != null) {
|
---|
956 | latentValues[latentValueRowIdx, latentValueColIdx++] = y0;
|
---|
957 | }
|
---|
958 | }
|
---|
959 | latentValueColIdx = 0; latentValueRowIdx++;
|
---|
960 |
|
---|
961 | { // CODE BELOW DOESN'T WORK ANYMORE
|
---|
962 | // if (latentVariables.Length > 0) throw new NotImplementedException();
|
---|
963 | //
|
---|
964 | // // add value entries for latent variables which are also integrated
|
---|
965 | // // initial values are at the end of the parameter vector
|
---|
966 | // // separate initial values for each episode
|
---|
967 | // var initialValueIdx = parameterValues.Length - episodes.Count() * latentVariables.Length + episodeIdx * latentVariables.Length;
|
---|
968 | // foreach (var latentVar in latentVariables) {
|
---|
969 | // var arr = new double[parameterValues.Length]; // backing array
|
---|
970 | // arr[initialValueIdx] = 1.0;
|
---|
971 | // var g = new Vector(arr);
|
---|
972 | // nodeValues.SetVariableValue(latentVar, parameterValues[initialValueIdx], g); // we don't have observations for latent variables therefore we optimize the initial value for each episode
|
---|
973 | // initialValueIdx++;
|
---|
974 | // }
|
---|
975 | }
|
---|
976 |
|
---|
977 | var prevT = t0; // TODO: here we should use a variable for t if it is available. Right now we assume equidistant measurements.
|
---|
978 | foreach (var t in rows.Skip(1)) {
|
---|
979 | if (odeSolver == "HeuristicLab")
|
---|
980 | IntegrateHL(trees, calculatedVariables, nodeValues, numericIntegrationSteps); // integrator updates nodeValues
|
---|
981 | else if (odeSolver == "CVODES")
|
---|
982 | throw new NotImplementedException();
|
---|
983 | // IntegrateCVODES(trees, calculatedVariables, variableValues, parameterValues, t - prevT);
|
---|
984 | else throw new InvalidOperationException("Unknown ODE solver " + odeSolver);
|
---|
985 | prevT = t;
|
---|
986 |
|
---|
987 | // update output for target variables (TODO: if we want to visualize the latent variables then we need to provide a separate output)
|
---|
988 | for (int i = 0; i < targetVariables.Length; i++) {
|
---|
989 | var targetVar = targetVariables[i];
|
---|
990 | var yt = nodeValues.GetVariableValue(targetVar);
|
---|
991 |
|
---|
992 | // fill up remaining rows with last valid value if there are invalid values
|
---|
993 | if (double.IsNaN(yt.Item1) || double.IsInfinity(yt.Item1)) {
|
---|
994 | for (; outputRowIdx < fi.Length; outputRowIdx++) {
|
---|
995 | var prevIdx = outputRowIdx - targetVariables.Length;
|
---|
996 | fi[outputRowIdx] = fi[prevIdx]; // current <- prev
|
---|
997 | if (jac != null) for (int j = 0; j < jac.GetLength(1); j++) jac[outputRowIdx, j] = jac[prevIdx, j];
|
---|
998 | }
|
---|
999 | return;
|
---|
1000 | };
|
---|
1001 |
|
---|
1002 | fi[outputRowIdx] = yt.Item1;
|
---|
1003 | var g = yt.Item2;
|
---|
1004 | g.CopyTo(jac, outputRowIdx);
|
---|
1005 | outputRowIdx++;
|
---|
1006 | }
|
---|
1007 | if (latentValues != null) {
|
---|
1008 | foreach (var latentVariable in latentVariables) {
|
---|
1009 | var lt = nodeValues.GetVariableValue(latentVariable).Item1;
|
---|
1010 | latentValues[latentValueRowIdx, latentValueColIdx++] = lt;
|
---|
1011 | }
|
---|
1012 | latentValueRowIdx++; latentValueColIdx = 0;
|
---|
1013 | }
|
---|
1014 |
|
---|
1015 | // update for next time step (only the inputs)
|
---|
1016 | foreach (var varName in inputVariables) {
|
---|
1017 | // in this problem we also allow fixed numeric parameters (represented as variables with the value as name)
|
---|
1018 | if (double.TryParse(varName, NumberStyles.Float, CultureInfo.InvariantCulture, out double value)) {
|
---|
1019 | // value is unchanged
|
---|
1020 | } else {
|
---|
1021 | nodeValues.SetVariableValue(varName, dataset.GetDoubleValue(varName, t), Vector.Zero);
|
---|
1022 | }
|
---|
1023 | }
|
---|
1024 | }
|
---|
1025 | episodeIdx++;
|
---|
1026 | }
|
---|
1027 | }
|
---|
1028 |
|
---|
1029 | #region CVODES
|
---|
1030 |
|
---|
1031 | /*
|
---|
1032 | /// <summary>
|
---|
1033 | /// Here we use CVODES to solve the ODE. Forward sensitivities are used to calculate the gradient for parameter optimization
|
---|
1034 | /// </summary>
|
---|
1035 | /// <param name="trees">Each equation in the ODE represented as a tree</param>
|
---|
1036 | /// <param name="calculatedVariables">The names of the calculated variables</param>
|
---|
1037 | /// <param name="variableValues">The start values of the calculated variables as well as their sensitivites over parameters</param>
|
---|
1038 | /// <param name="parameterValues">The current parameter values</param>
|
---|
1039 | /// <param name="t">The time t up to which we need to integrate.</param>
|
---|
1040 | private static void IntegrateCVODES(
|
---|
1041 | ISymbolicExpressionTree[] trees, // f(y,p) in tree representation
|
---|
1042 | string[] calculatedVariables, // names of elements of y
|
---|
1043 | Dictionary<string, Tuple<double, Vector>> variableValues, // y (intput and output) input: y(t0), output: y(t0+t)
|
---|
1044 | double[] parameterValues, // p
|
---|
1045 | double t // duration t for which we want to integrate
|
---|
1046 | ) {
|
---|
1047 |
|
---|
1048 | // the RHS of the ODE
|
---|
1049 | // dy/dt = f(y_t,x_t,p)
|
---|
1050 | CVODES.CVRhsFunc f = CreateOdeRhs(trees, calculatedVariables, parameterValues);
|
---|
1051 | // the Jacobian ∂f/∂y
|
---|
1052 | CVODES.CVDlsJacFunc jac = CreateJac(trees, calculatedVariables, parameterValues);
|
---|
1053 |
|
---|
1054 | // the RHS for the forward sensitivities (∂f/∂y)s_i(t) + ∂f/∂p_i
|
---|
1055 | CVODES.CVSensRhsFn sensF = CreateSensitivityRhs(trees, calculatedVariables, parameterValues);
|
---|
1056 |
|
---|
1057 | // setup solver
|
---|
1058 | int numberOfEquations = trees.Length;
|
---|
1059 | IntPtr y = IntPtr.Zero;
|
---|
1060 | IntPtr cvode_mem = IntPtr.Zero;
|
---|
1061 | IntPtr A = IntPtr.Zero;
|
---|
1062 | IntPtr yS0 = IntPtr.Zero;
|
---|
1063 | IntPtr linearSolver = IntPtr.Zero;
|
---|
1064 | var ns = parameterValues.Length; // number of parameters
|
---|
1065 |
|
---|
1066 | try {
|
---|
1067 | y = CVODES.N_VNew_Serial(numberOfEquations);
|
---|
1068 | // init y to current values of variables
|
---|
1069 | // y must be initialized before calling CVodeInit
|
---|
1070 | for (int i = 0; i < calculatedVariables.Length; i++) {
|
---|
1071 | CVODES.NV_Set_Ith_S(y, i, variableValues[calculatedVariables[i]].Item1);
|
---|
1072 | }
|
---|
1073 |
|
---|
1074 | cvode_mem = CVODES.CVodeCreate(CVODES.MultistepMethod.CV_ADAMS, CVODES.NonlinearSolverIteration.CV_FUNCTIONAL);
|
---|
1075 |
|
---|
1076 | var flag = CVODES.CVodeInit(cvode_mem, f, 0.0, y);
|
---|
1077 | Assert(CVODES.CV_SUCCESS == flag);
|
---|
1078 |
|
---|
1079 | double relTol = 1.0e-2;
|
---|
1080 | double absTol = 1.0;
|
---|
1081 | flag = CVODES.CVodeSStolerances(cvode_mem, relTol, absTol); // TODO: probably need to adjust absTol per variable
|
---|
1082 | Assert(CVODES.CV_SUCCESS == flag);
|
---|
1083 |
|
---|
1084 | A = CVODES.SUNDenseMatrix(numberOfEquations, numberOfEquations);
|
---|
1085 | Assert(A != IntPtr.Zero);
|
---|
1086 |
|
---|
1087 | linearSolver = CVODES.SUNDenseLinearSolver(y, A);
|
---|
1088 | Assert(linearSolver != IntPtr.Zero);
|
---|
1089 |
|
---|
1090 | flag = CVODES.CVDlsSetLinearSolver(cvode_mem, linearSolver, A);
|
---|
1091 | Assert(CVODES.CV_SUCCESS == flag);
|
---|
1092 |
|
---|
1093 | flag = CVODES.CVDlsSetJacFn(cvode_mem, jac);
|
---|
1094 | Assert(CVODES.CV_SUCCESS == flag);
|
---|
1095 |
|
---|
1096 | yS0 = CVODES.N_VCloneVectorArray_Serial(ns, y); // clone the output vector for each parameter
|
---|
1097 | unsafe {
|
---|
1098 | // set to initial sensitivities supplied by caller
|
---|
1099 | for (int pIdx = 0; pIdx < ns; pIdx++) {
|
---|
1100 | var yS0_i = *((IntPtr*)yS0.ToPointer() + pIdx);
|
---|
1101 | for (var varIdx = 0; varIdx < calculatedVariables.Length; varIdx++) {
|
---|
1102 | CVODES.NV_Set_Ith_S(yS0_i, varIdx, variableValues[calculatedVariables[varIdx]].Item2[pIdx]);
|
---|
1103 | }
|
---|
1104 | }
|
---|
1105 | }
|
---|
1106 |
|
---|
1107 | flag = CVODES.CVodeSensInit(cvode_mem, ns, CVODES.CV_SIMULTANEOUS, sensF, yS0);
|
---|
1108 | Assert(CVODES.CV_SUCCESS == flag);
|
---|
1109 |
|
---|
1110 | flag = CVODES.CVodeSensEEtolerances(cvode_mem);
|
---|
1111 | Assert(CVODES.CV_SUCCESS == flag);
|
---|
1112 |
|
---|
1113 | // make one forward integration step
|
---|
1114 | double tout = 0.0; // first output time
|
---|
1115 | flag = CVODES.CVode(cvode_mem, t, y, ref tout, CVODES.CV_NORMAL);
|
---|
1116 | if (flag == CVODES.CV_SUCCESS) {
|
---|
1117 | Assert(t == tout);
|
---|
1118 |
|
---|
1119 | // get sensitivities
|
---|
1120 | flag = CVODES.CVodeGetSens(cvode_mem, ref tout, yS0);
|
---|
1121 | Assert(CVODES.CV_SUCCESS == flag);
|
---|
1122 |
|
---|
1123 | // update variableValues based on integration results
|
---|
1124 | for (int varIdx = 0; varIdx < calculatedVariables.Length; varIdx++) {
|
---|
1125 | var yi = CVODES.NV_Get_Ith_S(y, varIdx);
|
---|
1126 | var gArr = new double[parameterValues.Length];
|
---|
1127 | for (var pIdx = 0; pIdx < parameterValues.Length; pIdx++) {
|
---|
1128 | unsafe {
|
---|
1129 | var yS0_pi = *((IntPtr*)yS0.ToPointer() + pIdx);
|
---|
1130 | gArr[pIdx] = CVODES.NV_Get_Ith_S(yS0_pi, varIdx);
|
---|
1131 | }
|
---|
1132 | }
|
---|
1133 | variableValues[calculatedVariables[varIdx]] = Tuple.Create(yi, new Vector(gArr));
|
---|
1134 | }
|
---|
1135 | } else {
|
---|
1136 | variableValues.Clear(); // indicate problems by not returning new values
|
---|
1137 | }
|
---|
1138 |
|
---|
1139 | // cleanup all allocated objects
|
---|
1140 | } finally {
|
---|
1141 | if (y != IntPtr.Zero) CVODES.N_VDestroy_Serial(y);
|
---|
1142 | if (cvode_mem != IntPtr.Zero) CVODES.CVodeFree(ref cvode_mem);
|
---|
1143 | if (linearSolver != IntPtr.Zero) CVODES.SUNLinSolFree(linearSolver);
|
---|
1144 | if (A != IntPtr.Zero) CVODES.SUNMatDestroy(A);
|
---|
1145 | if (yS0 != IntPtr.Zero) CVODES.N_VDestroyVectorArray_Serial(yS0, ns);
|
---|
1146 | }
|
---|
1147 | }
|
---|
1148 |
|
---|
1149 |
|
---|
1150 | private static CVODES.CVRhsFunc CreateOdeRhs(
|
---|
1151 | ISymbolicExpressionTree[] trees,
|
---|
1152 | string[] calculatedVariables,
|
---|
1153 | double[] parameterValues) {
|
---|
1154 | // we don't need to calculate a gradient here
|
---|
1155 | return (double t,
|
---|
1156 | IntPtr y, // N_Vector, current value of y (input)
|
---|
1157 | IntPtr ydot, // N_Vector (calculated value of y' (output)
|
---|
1158 | IntPtr user_data // optional user data, (unused here)
|
---|
1159 | ) => {
|
---|
1160 | // TODO: perf
|
---|
1161 | var nodeValues = new Dictionary<ISymbolicExpressionTreeNode, Tuple<double, Vector>>();
|
---|
1162 |
|
---|
1163 | int pIdx = 0;
|
---|
1164 | foreach (var tree in trees) {
|
---|
1165 | foreach (var n in tree.IterateNodesPrefix()) {
|
---|
1166 | if (IsConstantNode(n)) {
|
---|
1167 | nodeValues.Add(n, Tuple.Create(parameterValues[pIdx], Vector.Zero)); // here we do not need a gradient
|
---|
1168 | pIdx++;
|
---|
1169 | } else if (n.SubtreeCount == 0) {
|
---|
1170 | // for variables and latent variables get the value from variableValues
|
---|
1171 | var varName = n.Symbol.Name;
|
---|
1172 | var varIdx = Array.IndexOf(calculatedVariables, varName); // TODO: perf!
|
---|
1173 | if (varIdx < 0) throw new InvalidProgramException();
|
---|
1174 | var y_i = CVODES.NV_Get_Ith_S(y, (long)varIdx);
|
---|
1175 | nodeValues.Add(n, Tuple.Create(y_i, Vector.Zero)); // no gradient needed
|
---|
1176 | }
|
---|
1177 | }
|
---|
1178 | }
|
---|
1179 | for (int i = 0; i < trees.Length; i++) {
|
---|
1180 | var tree = trees[i];
|
---|
1181 | var res_i = InterpretRec(tree.Root.GetSubtree(0).GetSubtree(0), nodeValues);
|
---|
1182 | CVODES.NV_Set_Ith_S(ydot, i, res_i.Item1);
|
---|
1183 | }
|
---|
1184 | return 0;
|
---|
1185 | };
|
---|
1186 | }
|
---|
1187 |
|
---|
1188 | private static CVODES.CVDlsJacFunc CreateJac(
|
---|
1189 | ISymbolicExpressionTree[] trees,
|
---|
1190 | string[] calculatedVariables,
|
---|
1191 | double[] parameterValues) {
|
---|
1192 |
|
---|
1193 | return (
|
---|
1194 | double t, // current time (input)
|
---|
1195 | IntPtr y, // N_Vector, current value of y (input)
|
---|
1196 | IntPtr fy, // N_Vector, current value of f (input)
|
---|
1197 | IntPtr Jac, // SUNMatrix ∂f/∂y (output, rows i contains are ∂f_i/∂y vector)
|
---|
1198 | IntPtr user_data, // optional (unused here)
|
---|
1199 | IntPtr tmp1, // N_Vector, optional (unused here)
|
---|
1200 | IntPtr tmp2, // N_Vector, optional (unused here)
|
---|
1201 | IntPtr tmp3 // N_Vector, optional (unused here)
|
---|
1202 | ) => {
|
---|
1203 | // here we need to calculate partial derivatives for the calculated variables y
|
---|
1204 | var nodeValues = new Dictionary<ISymbolicExpressionTreeNode, Tuple<double, Vector>>();
|
---|
1205 | int pIdx = 0;
|
---|
1206 | foreach (var tree in trees) {
|
---|
1207 | foreach (var n in tree.IterateNodesPrefix()) {
|
---|
1208 | if (IsConstantNode(n)) {
|
---|
1209 | nodeValues.Add(n, Tuple.Create(parameterValues[pIdx], Vector.Zero)); // here we need a gradient over y which is zero for parameters
|
---|
1210 | pIdx++;
|
---|
1211 | } else if (n.SubtreeCount == 0) {
|
---|
1212 | // for variables and latent variables we use values supplied in y and init gradient vectors accordingly
|
---|
1213 | var varName = n.Symbol.Name;
|
---|
1214 | var varIdx = Array.IndexOf(calculatedVariables, varName); // TODO: perf!
|
---|
1215 | if (varIdx < 0) throw new InvalidProgramException();
|
---|
1216 |
|
---|
1217 | var y_i = CVODES.NV_Get_Ith_S(y, (long)varIdx);
|
---|
1218 | var gArr = new double[CVODES.NV_LENGTH_S(y)]; // backing array
|
---|
1219 | gArr[varIdx] = 1.0;
|
---|
1220 | var g = new Vector(gArr);
|
---|
1221 | nodeValues.Add(n, Tuple.Create(y_i, g));
|
---|
1222 | }
|
---|
1223 | }
|
---|
1224 | }
|
---|
1225 |
|
---|
1226 | for (int i = 0; i < trees.Length; i++) {
|
---|
1227 | var tree = trees[i];
|
---|
1228 | var res = InterpretRec(tree.Root.GetSubtree(0).GetSubtree(0), nodeValues);
|
---|
1229 | var g = res.Item2;
|
---|
1230 | for (int j = 0; j < calculatedVariables.Length; j++) {
|
---|
1231 | CVODES.SUNDenseMatrix_Set(Jac, i, j, g[j]);
|
---|
1232 | }
|
---|
1233 | }
|
---|
1234 | return 0; // on success
|
---|
1235 | };
|
---|
1236 | }
|
---|
1237 |
|
---|
1238 |
|
---|
1239 | // to calculate sensitivities RHS for all equations at once
|
---|
1240 | // must compute (∂f/∂y)s_i(t) + ∂f/∂p_i and store in ySdot.
|
---|
1241 | // Index i refers to parameters, dimensionality of matrix and vectors is number of equations
|
---|
1242 | private static CVODES.CVSensRhsFn CreateSensitivityRhs(ISymbolicExpressionTree[] trees, string[] calculatedVariables, double[] parameterValues) {
|
---|
1243 | return (
|
---|
1244 | int Ns, // number of parameters
|
---|
1245 | double t, // current time
|
---|
1246 | IntPtr y, // N_Vector y(t) (input)
|
---|
1247 | IntPtr ydot, // N_Vector dy/dt(t) (input)
|
---|
1248 | IntPtr yS, // N_Vector*, one vector for each parameter (input)
|
---|
1249 | IntPtr ySdot, // N_Vector*, one vector for each parameter (output)
|
---|
1250 | IntPtr user_data, // optional (unused here)
|
---|
1251 | IntPtr tmp1, // N_Vector, optional (unused here)
|
---|
1252 | IntPtr tmp2 // N_Vector, optional (unused here)
|
---|
1253 | ) => {
|
---|
1254 | // here we need to calculate partial derivatives for the calculated variables y as well as for the parameters
|
---|
1255 | var nodeValues = new Dictionary<ISymbolicExpressionTreeNode, Tuple<double, Vector>>();
|
---|
1256 | var d = calculatedVariables.Length + parameterValues.Length; // dimensionality of gradient
|
---|
1257 | // first collect variable values
|
---|
1258 | foreach (var tree in trees) {
|
---|
1259 | foreach (var n in tree.IterateNodesPrefix()) {
|
---|
1260 | if (IsVariableNode(n)) {
|
---|
1261 | // for variables and latent variables we use values supplied in y and init gradient vectors accordingly
|
---|
1262 | var varName = n.Symbol.Name;
|
---|
1263 | var varIdx = Array.IndexOf(calculatedVariables, varName); // TODO: perf!
|
---|
1264 | if (varIdx < 0) throw new InvalidProgramException();
|
---|
1265 |
|
---|
1266 | var y_i = CVODES.NV_Get_Ith_S(y, (long)varIdx);
|
---|
1267 | var gArr = new double[d]; // backing array
|
---|
1268 | gArr[varIdx] = 1.0;
|
---|
1269 | var g = new Vector(gArr);
|
---|
1270 | nodeValues.Add(n, Tuple.Create(y_i, g));
|
---|
1271 | }
|
---|
1272 | }
|
---|
1273 | }
|
---|
1274 | // then collect constants
|
---|
1275 | int pIdx = 0;
|
---|
1276 | foreach (var tree in trees) {
|
---|
1277 | foreach (var n in tree.IterateNodesPrefix()) {
|
---|
1278 | if (IsConstantNode(n)) {
|
---|
1279 | var gArr = new double[d];
|
---|
1280 | gArr[calculatedVariables.Length + pIdx] = 1.0;
|
---|
1281 | var g = new Vector(gArr);
|
---|
1282 | nodeValues.Add(n, Tuple.Create(parameterValues[pIdx], g));
|
---|
1283 | pIdx++;
|
---|
1284 | }
|
---|
1285 | }
|
---|
1286 | }
|
---|
1287 | // gradient vector is [∂f/∂y_1, ∂f/∂y_2, ... ∂f/∂yN, ∂f/∂p_1 ... ∂f/∂p_K]
|
---|
1288 |
|
---|
1289 |
|
---|
1290 | for (pIdx = 0; pIdx < Ns; pIdx++) {
|
---|
1291 | unsafe {
|
---|
1292 | var sDot_pi = *((IntPtr*)ySdot.ToPointer() + pIdx);
|
---|
1293 | CVODES.N_VConst_Serial(0.0, sDot_pi);
|
---|
1294 | }
|
---|
1295 | }
|
---|
1296 |
|
---|
1297 | for (int i = 0; i < trees.Length; i++) {
|
---|
1298 | var tree = trees[i];
|
---|
1299 | var res = InterpretRec(tree.Root.GetSubtree(0).GetSubtree(0), nodeValues);
|
---|
1300 | var g = res.Item2;
|
---|
1301 |
|
---|
1302 |
|
---|
1303 | // update ySdot = (∂f/∂y)s_i(t) + ∂f/∂p_i
|
---|
1304 |
|
---|
1305 | for (pIdx = 0; pIdx < Ns; pIdx++) {
|
---|
1306 | unsafe {
|
---|
1307 | var sDot_pi = *((IntPtr*)ySdot.ToPointer() + pIdx);
|
---|
1308 | var s_pi = *((IntPtr*)yS.ToPointer() + pIdx);
|
---|
1309 |
|
---|
1310 | var v = CVODES.NV_Get_Ith_S(sDot_pi, i);
|
---|
1311 | // (∂f/∂y)s_i(t)
|
---|
1312 | var p = 0.0;
|
---|
1313 | for (int yIdx = 0; yIdx < calculatedVariables.Length; yIdx++) {
|
---|
1314 | p += g[yIdx] * CVODES.NV_Get_Ith_S(s_pi, yIdx);
|
---|
1315 | }
|
---|
1316 | // + ∂f/∂p_i
|
---|
1317 | CVODES.NV_Set_Ith_S(sDot_pi, i, v + p + g[calculatedVariables.Length + pIdx]);
|
---|
1318 | }
|
---|
1319 | }
|
---|
1320 |
|
---|
1321 | }
|
---|
1322 | return 0; // on success
|
---|
1323 | };
|
---|
1324 | }
|
---|
1325 | */
|
---|
1326 | #endregion
|
---|
1327 |
|
---|
1328 | private static void IntegrateHL(
|
---|
1329 | ISymbolicExpressionTree[] trees,
|
---|
1330 | string[] calculatedVariables, // names of integrated variables
|
---|
1331 | NodeValueLookup nodeValues,
|
---|
1332 | int numericIntegrationSteps) {
|
---|
1333 |
|
---|
1334 |
|
---|
1335 | double[] deltaF = new double[calculatedVariables.Length];
|
---|
1336 | Vector[] deltaG = new Vector[calculatedVariables.Length];
|
---|
1337 |
|
---|
1338 | double h = 1.0 / numericIntegrationSteps;
|
---|
1339 | for (int step = 0; step < numericIntegrationSteps; step++) {
|
---|
1340 |
|
---|
1341 | // evaluate all trees
|
---|
1342 | for (int i = 0; i < trees.Length; i++) {
|
---|
1343 | var tree = trees[i];
|
---|
1344 |
|
---|
1345 | // Root.GetSubtree(0).GetSubtree(0) skips programRoot and startSymbol
|
---|
1346 | double f; Vector g;
|
---|
1347 | InterpretRec(tree.Root.GetSubtree(0).GetSubtree(0), nodeValues, out f, out g);
|
---|
1348 | deltaF[i] = f;
|
---|
1349 | deltaG[i] = g;
|
---|
1350 | }
|
---|
1351 |
|
---|
1352 | // update variableValues for next step, trapezoid integration
|
---|
1353 | for (int i = 0; i < trees.Length; i++) {
|
---|
1354 | var varName = calculatedVariables[i];
|
---|
1355 | var oldVal = nodeValues.GetVariableValue(varName);
|
---|
1356 | nodeValues.SetVariableValue(varName, oldVal.Item1 + h * deltaF[i], oldVal.Item2.Add(deltaG[i].Scale(h)));
|
---|
1357 | }
|
---|
1358 | }
|
---|
1359 | }
|
---|
1360 |
|
---|
1361 | // TODO: use an existing interpreter implementation instead
|
---|
1362 | private static double InterpretRec(ISymbolicExpressionTreeNode node, NodeValueLookup nodeValues) {
|
---|
1363 | if (node is ConstantTreeNode) {
|
---|
1364 | return ((ConstantTreeNode)node).Value;
|
---|
1365 | } else if (node is VariableTreeNode) {
|
---|
1366 | return nodeValues.NodeValue(node);
|
---|
1367 | } else if (node.Symbol is Addition) {
|
---|
1368 | var f = InterpretRec(node.GetSubtree(0), nodeValues);
|
---|
1369 | for (int i = 1; i < node.SubtreeCount; i++) {
|
---|
1370 | f += InterpretRec(node.GetSubtree(i), nodeValues);
|
---|
1371 | }
|
---|
1372 | return f;
|
---|
1373 | } else if (node.Symbol is Multiplication) {
|
---|
1374 | var f = InterpretRec(node.GetSubtree(0), nodeValues);
|
---|
1375 | for (int i = 1; i < node.SubtreeCount; i++) {
|
---|
1376 | f *= InterpretRec(node.GetSubtree(i), nodeValues);
|
---|
1377 | }
|
---|
1378 | return f;
|
---|
1379 | } else if (node.Symbol is Subtraction) {
|
---|
1380 | if (node.SubtreeCount == 1) {
|
---|
1381 | return -InterpretRec(node.GetSubtree(0), nodeValues);
|
---|
1382 | } else {
|
---|
1383 | var f = InterpretRec(node.GetSubtree(0), nodeValues);
|
---|
1384 | for (int i = 1; i < node.SubtreeCount; i++) {
|
---|
1385 | f -= InterpretRec(node.GetSubtree(i), nodeValues);
|
---|
1386 | }
|
---|
1387 | return f;
|
---|
1388 | }
|
---|
1389 | } else if (node.Symbol is Division) {
|
---|
1390 | if (node.SubtreeCount == 1) {
|
---|
1391 | var f = InterpretRec(node.GetSubtree(0), nodeValues);
|
---|
1392 | // protected division
|
---|
1393 | if (f.IsAlmost(0.0)) {
|
---|
1394 | return 0;
|
---|
1395 | } else {
|
---|
1396 | return 1.0 / f;
|
---|
1397 | }
|
---|
1398 | } else {
|
---|
1399 | var f = InterpretRec(node.GetSubtree(0), nodeValues);
|
---|
1400 | for (int i = 1; i < node.SubtreeCount; i++) {
|
---|
1401 | var g = InterpretRec(node.GetSubtree(i), nodeValues);
|
---|
1402 | // protected division
|
---|
1403 | if (g.IsAlmost(0.0)) {
|
---|
1404 | return 0;
|
---|
1405 | } else {
|
---|
1406 | f /= g;
|
---|
1407 | }
|
---|
1408 | }
|
---|
1409 | return f;
|
---|
1410 | }
|
---|
1411 | } else if (node.Symbol is Sine) {
|
---|
1412 | Assert(node.SubtreeCount == 1);
|
---|
1413 |
|
---|
1414 | var f = InterpretRec(node.GetSubtree(0), nodeValues);
|
---|
1415 | return Math.Sin(f);
|
---|
1416 | } else if (node.Symbol is Cosine) {
|
---|
1417 | Assert(node.SubtreeCount == 1);
|
---|
1418 |
|
---|
1419 | var f = InterpretRec(node.GetSubtree(0), nodeValues);
|
---|
1420 | return Math.Cos(f);
|
---|
1421 | } else if (node.Symbol is Square) {
|
---|
1422 | Assert(node.SubtreeCount == 1);
|
---|
1423 |
|
---|
1424 | var f = InterpretRec(node.GetSubtree(0), nodeValues);
|
---|
1425 | return f * f;
|
---|
1426 | } else if (node.Symbol is Exponential) {
|
---|
1427 | Assert(node.SubtreeCount == 1);
|
---|
1428 |
|
---|
1429 | var f = InterpretRec(node.GetSubtree(0), nodeValues);
|
---|
1430 | return Math.Exp(f);
|
---|
1431 | } else if (node.Symbol is Logarithm) {
|
---|
1432 | Assert(node.SubtreeCount == 1);
|
---|
1433 |
|
---|
1434 | var f = InterpretRec(node.GetSubtree(0), nodeValues);
|
---|
1435 | return Math.Log(f);
|
---|
1436 | } else if (node.Symbol is HyperbolicTangent) {
|
---|
1437 | Assert(node.SubtreeCount == 1);
|
---|
1438 |
|
---|
1439 | var f = InterpretRec(node.GetSubtree(0), nodeValues);
|
---|
1440 | return Math.Tanh(f);
|
---|
1441 | } else if (node.Symbol is AnalyticQuotient) {
|
---|
1442 | Assert(node.SubtreeCount == 2);
|
---|
1443 |
|
---|
1444 | var f = InterpretRec(node.GetSubtree(0), nodeValues);
|
---|
1445 | var g = InterpretRec(node.GetSubtree(1), nodeValues);
|
---|
1446 | return f / Math.Sqrt(1 + g * g);
|
---|
1447 | } else throw new NotSupportedException("unsupported symbol");
|
---|
1448 | }
|
---|
1449 |
|
---|
1450 | private static void Assert(bool cond) {
|
---|
1451 | #if DEBUG
|
---|
1452 | if (!cond) throw new InvalidOperationException("Assertion failed");
|
---|
1453 | #endif
|
---|
1454 | }
|
---|
1455 |
|
---|
1456 | private static void InterpretRec(
|
---|
1457 | ISymbolicExpressionTreeNode node,
|
---|
1458 | NodeValueLookup nodeValues, // contains value and gradient vector for a node (variables and constants only)
|
---|
1459 | out double z,
|
---|
1460 | out Vector dz
|
---|
1461 | ) {
|
---|
1462 | double f, g;
|
---|
1463 | Vector df, dg;
|
---|
1464 | if (node.Symbol is Constant || node.Symbol is Variable) {
|
---|
1465 | z = nodeValues.NodeValue(node);
|
---|
1466 | dz = Vector.CreateNew(nodeValues.NodeGradient(node)); // original gradient vectors are never changed by evaluation
|
---|
1467 | } else if (node.Symbol is Addition) {
|
---|
1468 | InterpretRec(node.GetSubtree(0), nodeValues, out f, out df);
|
---|
1469 | for (int i = 1; i < node.SubtreeCount; i++) {
|
---|
1470 | InterpretRec(node.GetSubtree(i), nodeValues, out g, out dg);
|
---|
1471 | f = f + g;
|
---|
1472 | df = df.Add(dg);
|
---|
1473 | }
|
---|
1474 | z = f;
|
---|
1475 | dz = df;
|
---|
1476 | } else if (node.Symbol is Multiplication) {
|
---|
1477 | InterpretRec(node.GetSubtree(0), nodeValues, out f, out df);
|
---|
1478 | for (int i = 1; i < node.SubtreeCount; i++) {
|
---|
1479 | InterpretRec(node.GetSubtree(i), nodeValues, out g, out dg);
|
---|
1480 | f = f * g;
|
---|
1481 | df = df.Scale(g).Add(dg.Scale(f)); // f'*g + f*g'
|
---|
1482 | }
|
---|
1483 | z = f;
|
---|
1484 | dz = df;
|
---|
1485 | } else if (node.Symbol is Subtraction) {
|
---|
1486 | if (node.SubtreeCount == 1) {
|
---|
1487 | InterpretRec(node.GetSubtree(0), nodeValues, out f, out df);
|
---|
1488 | z = -f;
|
---|
1489 | dz = df.Scale(-1.0);
|
---|
1490 | } else {
|
---|
1491 | InterpretRec(node.GetSubtree(0), nodeValues, out f, out df);
|
---|
1492 | for (int i = 1; i < node.SubtreeCount; i++) {
|
---|
1493 | InterpretRec(node.GetSubtree(i), nodeValues, out g, out dg);
|
---|
1494 | f = f - g;
|
---|
1495 | df = df.Subtract(dg);
|
---|
1496 | }
|
---|
1497 | z = f;
|
---|
1498 | dz = df;
|
---|
1499 | }
|
---|
1500 | } else if (node.Symbol is Division) {
|
---|
1501 | if (node.SubtreeCount == 1) {
|
---|
1502 | InterpretRec(node.GetSubtree(0), nodeValues, out f, out df);
|
---|
1503 | // protected division
|
---|
1504 | if (f.IsAlmost(0.0)) {
|
---|
1505 | z = 0;
|
---|
1506 | dz = Vector.Zero;
|
---|
1507 | } else {
|
---|
1508 | z = 1.0 / f;
|
---|
1509 | dz = df.Scale(-1 * z * z);
|
---|
1510 | }
|
---|
1511 | } else {
|
---|
1512 | InterpretRec(node.GetSubtree(0), nodeValues, out f, out df);
|
---|
1513 | for (int i = 1; i < node.SubtreeCount; i++) {
|
---|
1514 | InterpretRec(node.GetSubtree(i), nodeValues, out g, out dg);
|
---|
1515 | // protected division
|
---|
1516 | if (g.IsAlmost(0.0)) {
|
---|
1517 | z = 0;
|
---|
1518 | dz = Vector.Zero;
|
---|
1519 | return;
|
---|
1520 | } else {
|
---|
1521 | var inv_g = 1.0 / g;
|
---|
1522 | f = f * inv_g;
|
---|
1523 | df = dg.Scale(-f * inv_g * inv_g).Add(df.Scale(inv_g));
|
---|
1524 | }
|
---|
1525 | }
|
---|
1526 | z = f;
|
---|
1527 | dz = df;
|
---|
1528 | }
|
---|
1529 | } else if (node.Symbol is Sine) {
|
---|
1530 | Assert(node.SubtreeCount == 1);
|
---|
1531 | InterpretRec(node.GetSubtree(0), nodeValues, out f, out df);
|
---|
1532 | z = Math.Sin(f);
|
---|
1533 | dz = df.Scale(Math.Cos(f));
|
---|
1534 | } else if (node.Symbol is Cosine) {
|
---|
1535 | Assert(node.SubtreeCount == 1);
|
---|
1536 | InterpretRec(node.GetSubtree(0), nodeValues, out f, out df);
|
---|
1537 | z = Math.Cos(f);
|
---|
1538 | dz = df.Scale(-Math.Sin(f));
|
---|
1539 | } else if (node.Symbol is Square) {
|
---|
1540 | Assert(node.SubtreeCount == 1);
|
---|
1541 | InterpretRec(node.GetSubtree(0), nodeValues, out f, out df);
|
---|
1542 | z = f * f;
|
---|
1543 | dz = df.Scale(2.0 * f);
|
---|
1544 | } else if (node.Symbol is Exponential) {
|
---|
1545 | Assert(node.SubtreeCount == 1);
|
---|
1546 | InterpretRec(node.GetSubtree(0), nodeValues, out f, out df);
|
---|
1547 | z = Math.Exp(f);
|
---|
1548 | dz = df.Scale(Math.Exp(f));
|
---|
1549 | } else if (node.Symbol is Logarithm) {
|
---|
1550 | Assert(node.SubtreeCount == 1);
|
---|
1551 | InterpretRec(node.GetSubtree(0), nodeValues, out f, out df);
|
---|
1552 | z = Math.Log(f);
|
---|
1553 | dz = df.Scale(1.0 / f);
|
---|
1554 | } else if (node.Symbol is HyperbolicTangent) {
|
---|
1555 | Assert(node.SubtreeCount == 1);
|
---|
1556 | InterpretRec(node.GetSubtree(0), nodeValues, out f, out df);
|
---|
1557 | z = Math.Tanh(f);
|
---|
1558 | dz = df.Scale(1 - z * z); // tanh(f(x))' = f(x)'sech²(f(x)) = f(x)'(1 - tanh²(f(x)))
|
---|
1559 | } else if (node.Symbol is AnalyticQuotient) {
|
---|
1560 | Assert(node.SubtreeCount == 2);
|
---|
1561 | InterpretRec(node.GetSubtree(0), nodeValues, out f, out df);
|
---|
1562 | InterpretRec(node.GetSubtree(1), nodeValues, out g, out dg);
|
---|
1563 | z = f / Math.Sqrt(1 + g * g);
|
---|
1564 | var denom = 1.0 / Math.Pow(1 + g * g, 1.5);
|
---|
1565 | dz = df.Scale(1 + g * g).Subtract(dg.Scale(f * g)).Scale(denom);
|
---|
1566 | } else {
|
---|
1567 | throw new NotSupportedException("unsupported symbol");
|
---|
1568 | }
|
---|
1569 | }
|
---|
1570 |
|
---|
1571 | #endregion
|
---|
1572 |
|
---|
1573 | #region events
|
---|
1574 | /*
|
---|
1575 | * Dependencies between parameters:
|
---|
1576 | *
|
---|
1577 | * ProblemData
|
---|
1578 | * |
|
---|
1579 | * V
|
---|
1580 | * TargetVariables FunctionSet MaximumLength NumberOfLatentVariables
|
---|
1581 | * | | | |
|
---|
1582 | * V V | |
|
---|
1583 | * Grammar <---------------+-------------------
|
---|
1584 | * |
|
---|
1585 | * V
|
---|
1586 | * Encoding
|
---|
1587 | */
|
---|
1588 | private void RegisterEventHandlers() {
|
---|
1589 | ProblemDataParameter.ValueChanged += ProblemDataParameter_ValueChanged;
|
---|
1590 | if (ProblemDataParameter.Value != null) ProblemDataParameter.Value.Changed += ProblemData_Changed;
|
---|
1591 |
|
---|
1592 | TargetVariablesParameter.ValueChanged += TargetVariablesParameter_ValueChanged;
|
---|
1593 | if (TargetVariablesParameter.Value != null) TargetVariablesParameter.Value.CheckedItemsChanged += CheckedTargetVariablesChanged;
|
---|
1594 |
|
---|
1595 | FunctionSetParameter.ValueChanged += FunctionSetParameter_ValueChanged;
|
---|
1596 | if (FunctionSetParameter.Value != null) FunctionSetParameter.Value.CheckedItemsChanged += CheckedFunctionsChanged;
|
---|
1597 |
|
---|
1598 | MaximumLengthParameter.Value.ValueChanged += MaximumLengthChanged;
|
---|
1599 |
|
---|
1600 | NumberOfLatentVariablesParameter.Value.ValueChanged += NumLatentVariablesChanged;
|
---|
1601 | }
|
---|
1602 |
|
---|
1603 | private void NumLatentVariablesChanged(object sender, EventArgs e) {
|
---|
1604 | UpdateGrammarAndEncoding();
|
---|
1605 | }
|
---|
1606 |
|
---|
1607 | private void MaximumLengthChanged(object sender, EventArgs e) {
|
---|
1608 | UpdateGrammarAndEncoding();
|
---|
1609 | }
|
---|
1610 |
|
---|
1611 | private void FunctionSetParameter_ValueChanged(object sender, EventArgs e) {
|
---|
1612 | FunctionSetParameter.Value.CheckedItemsChanged += CheckedFunctionsChanged;
|
---|
1613 | }
|
---|
1614 |
|
---|
1615 | private void CheckedFunctionsChanged(object sender, CollectionItemsChangedEventArgs<IndexedItem<StringValue>> e) {
|
---|
1616 | UpdateGrammarAndEncoding();
|
---|
1617 | }
|
---|
1618 |
|
---|
1619 | private void TargetVariablesParameter_ValueChanged(object sender, EventArgs e) {
|
---|
1620 | TargetVariablesParameter.Value.CheckedItemsChanged += CheckedTargetVariablesChanged;
|
---|
1621 | UpdateGrammarAndEncoding();
|
---|
1622 | }
|
---|
1623 |
|
---|
1624 | private void CheckedTargetVariablesChanged(object sender, CollectionItemsChangedEventArgs<IndexedItem<StringValue>> e) {
|
---|
1625 | UpdateGrammarAndEncoding();
|
---|
1626 | }
|
---|
1627 |
|
---|
1628 | private void ProblemDataParameter_ValueChanged(object sender, EventArgs e) {
|
---|
1629 | ProblemDataParameter.Value.Changed += ProblemData_Changed;
|
---|
1630 | OnProblemDataChanged();
|
---|
1631 | OnReset();
|
---|
1632 | }
|
---|
1633 |
|
---|
1634 | private void ProblemData_Changed(object sender, EventArgs e) {
|
---|
1635 | OnProblemDataChanged();
|
---|
1636 | OnReset();
|
---|
1637 | }
|
---|
1638 |
|
---|
1639 | private void OnProblemDataChanged() {
|
---|
1640 | UpdateTargetVariables(); // implicitly updates other dependent parameters
|
---|
1641 | var handler = ProblemDataChanged;
|
---|
1642 | if (handler != null) handler(this, EventArgs.Empty);
|
---|
1643 | }
|
---|
1644 |
|
---|
1645 | #endregion
|
---|
1646 |
|
---|
1647 | #region helper
|
---|
1648 |
|
---|
1649 | private static double[] CalculateDifferences(double[] targetValues, double numericDifferencesSmoothing) {
|
---|
1650 | var x = Enumerable.Range(0, targetValues.Length).Select(i => (double)i).ToArray();
|
---|
1651 | alglib.spline1dfitpenalized(x, targetValues, targetValues.Length / 2, numericDifferencesSmoothing,
|
---|
1652 | out int info, out alglib.spline1dinterpolant s, out alglib.spline1dfitreport rep);
|
---|
1653 | if (info <= 0) throw new ArgumentException("There was a problem while smoothing numeric differences. Try to use a different smoothing parameter value.");
|
---|
1654 |
|
---|
1655 | double[] dy = new double[x.Length];
|
---|
1656 | for (int i = 0; i < x.Length; i++) {
|
---|
1657 | double xi = x[i];
|
---|
1658 | alglib.spline1ddiff(s, xi, out double y, out double dyi, out double d2y);
|
---|
1659 | dy[i] = dyi;
|
---|
1660 | }
|
---|
1661 | return dy;
|
---|
1662 | }
|
---|
1663 |
|
---|
1664 | private void InitAllParameters() {
|
---|
1665 | UpdateTargetVariables(); // implicitly updates the grammar and the encoding
|
---|
1666 | }
|
---|
1667 |
|
---|
1668 | private ReadOnlyCheckedItemList<StringValue> CreateFunctionSet() {
|
---|
1669 | var l = new CheckedItemList<StringValue>();
|
---|
1670 | l.Add(new StringValue("Addition").AsReadOnly());
|
---|
1671 | l.Add(new StringValue("Multiplication").AsReadOnly());
|
---|
1672 | l.Add(new StringValue("Division").AsReadOnly());
|
---|
1673 | l.Add(new StringValue("Subtraction").AsReadOnly());
|
---|
1674 | l.Add(new StringValue("Sine").AsReadOnly());
|
---|
1675 | l.Add(new StringValue("Cosine").AsReadOnly());
|
---|
1676 | l.Add(new StringValue("Square").AsReadOnly());
|
---|
1677 | l.Add(new StringValue("Logarithm").AsReadOnly());
|
---|
1678 | l.Add(new StringValue("Exponential").AsReadOnly());
|
---|
1679 | l.Add(new StringValue("HyperbolicTangent").AsReadOnly());
|
---|
1680 | l.Add(new StringValue("AnalyticQuotient").AsReadOnly());
|
---|
1681 | return l.AsReadOnly();
|
---|
1682 | }
|
---|
1683 |
|
---|
1684 | private static bool IsConstantNode(ISymbolicExpressionTreeNode n) {
|
---|
1685 | return n is ConstantTreeNode;
|
---|
1686 | }
|
---|
1687 | private static double GetConstantValue(ISymbolicExpressionTreeNode n) {
|
---|
1688 | return ((ConstantTreeNode)n).Value;
|
---|
1689 | }
|
---|
1690 | private static bool IsLatentVariableNode(ISymbolicExpressionTreeNode n) {
|
---|
1691 | return n.Symbol.Name[0] == 'λ';
|
---|
1692 | }
|
---|
1693 | private static bool IsVariableNode(ISymbolicExpressionTreeNode n) {
|
---|
1694 | return (n.SubtreeCount == 0) && !IsConstantNode(n) && !IsLatentVariableNode(n);
|
---|
1695 | }
|
---|
1696 | private static string GetVariableName(ISymbolicExpressionTreeNode n) {
|
---|
1697 | return ((VariableTreeNode)n).VariableName;
|
---|
1698 | }
|
---|
1699 |
|
---|
1700 | private void UpdateTargetVariables() {
|
---|
1701 | var currentlySelectedVariables = TargetVariables.CheckedItems
|
---|
1702 | .OrderBy(i => i.Index)
|
---|
1703 | .Select(i => i.Value.Value)
|
---|
1704 | .ToArray();
|
---|
1705 |
|
---|
1706 | var newVariablesList = new CheckedItemList<StringValue>(ProblemData.Dataset.VariableNames.Select(str => new StringValue(str).AsReadOnly()).ToArray()).AsReadOnly();
|
---|
1707 | var matchingItems = newVariablesList.Where(item => currentlySelectedVariables.Contains(item.Value)).ToArray();
|
---|
1708 | foreach (var item in newVariablesList) {
|
---|
1709 | if (currentlySelectedVariables.Contains(item.Value)) {
|
---|
1710 | newVariablesList.SetItemCheckedState(item, true);
|
---|
1711 | } else {
|
---|
1712 | newVariablesList.SetItemCheckedState(item, false);
|
---|
1713 | }
|
---|
1714 | }
|
---|
1715 | TargetVariablesParameter.Value = newVariablesList;
|
---|
1716 | }
|
---|
1717 |
|
---|
1718 | private void UpdateGrammarAndEncoding() {
|
---|
1719 | var encoding = new MultiEncoding();
|
---|
1720 | var g = CreateGrammar();
|
---|
1721 | foreach (var targetVar in TargetVariables.CheckedItems) {
|
---|
1722 | var e = new SymbolicExpressionTreeEncoding(targetVar + "_tree", g, MaximumLength, MaximumLength);
|
---|
1723 | var multiManipulator = e.Operators.Where(op => op is MultiSymbolicExpressionTreeManipulator).First();
|
---|
1724 | var filteredOperators = e.Operators.Where(op => !(op is IManipulator)).ToArray();
|
---|
1725 | // make sure our multi-manipulator is the only manipulator
|
---|
1726 | e.Operators = new IOperator[] { multiManipulator }.Concat(filteredOperators);
|
---|
1727 |
|
---|
1728 | // set the crossover probability to reduce likelihood that multiple trees are crossed at the same time
|
---|
1729 | var subtreeCrossovers = e.Operators.OfType<SubtreeCrossover>();
|
---|
1730 | foreach (var xover in subtreeCrossovers) {
|
---|
1731 | xover.CrossoverProbability.Value = 0.3;
|
---|
1732 | }
|
---|
1733 |
|
---|
1734 | encoding = encoding.Add(e); // only limit by length
|
---|
1735 | }
|
---|
1736 | for (int i = 1; i <= NumberOfLatentVariables; i++) {
|
---|
1737 | var e = new SymbolicExpressionTreeEncoding("λ" + i + "_tree", g, MaximumLength, MaximumLength);
|
---|
1738 | var multiManipulator = e.Operators.Where(op => op is MultiSymbolicExpressionTreeManipulator).First();
|
---|
1739 | var filteredOperators = e.Operators.Where(op => !(op is IManipulator)).ToArray();
|
---|
1740 | // make sure our multi-manipulator is the only manipulator
|
---|
1741 | e.Operators = new IOperator[] { multiManipulator }.Concat(filteredOperators);
|
---|
1742 |
|
---|
1743 | // set the crossover probability to reduce likelihood that multiple trees are crossed at the same time
|
---|
1744 | var subtreeCrossovers = e.Operators.OfType<SubtreeCrossover>();
|
---|
1745 | foreach (var xover in subtreeCrossovers) {
|
---|
1746 | xover.CrossoverProbability.Value = 0.3;
|
---|
1747 | }
|
---|
1748 |
|
---|
1749 | encoding = encoding.Add(e);
|
---|
1750 | }
|
---|
1751 | Encoding = encoding;
|
---|
1752 | }
|
---|
1753 |
|
---|
1754 | private ISymbolicExpressionGrammar CreateGrammar() {
|
---|
1755 | var grammar = new TypeCoherentExpressionGrammar();
|
---|
1756 | grammar.StartGrammarManipulation();
|
---|
1757 |
|
---|
1758 | var problemData = ProblemData;
|
---|
1759 | var ds = problemData.Dataset;
|
---|
1760 | grammar.MaximumFunctionArguments = 0;
|
---|
1761 | grammar.MaximumFunctionDefinitions = 0;
|
---|
1762 | var allowedVariables = problemData.AllowedInputVariables.Concat(TargetVariables.CheckedItems.Select(chk => chk.Value.Value));
|
---|
1763 | foreach (var varSymbol in grammar.Symbols.OfType<HeuristicLab.Problems.DataAnalysis.Symbolic.VariableBase>()) {
|
---|
1764 | if (!varSymbol.Fixed) {
|
---|
1765 | varSymbol.AllVariableNames = problemData.InputVariables.Select(x => x.Value).Where(x => ds.VariableHasType<double>(x));
|
---|
1766 | varSymbol.VariableNames = allowedVariables.Where(x => ds.VariableHasType<double>(x));
|
---|
1767 | }
|
---|
1768 | }
|
---|
1769 | foreach (var factorSymbol in grammar.Symbols.OfType<BinaryFactorVariable>()) {
|
---|
1770 | if (!factorSymbol.Fixed) {
|
---|
1771 | factorSymbol.AllVariableNames = problemData.InputVariables.Select(x => x.Value).Where(x => ds.VariableHasType<string>(x));
|
---|
1772 | factorSymbol.VariableNames = problemData.AllowedInputVariables.Where(x => ds.VariableHasType<string>(x));
|
---|
1773 | factorSymbol.VariableValues = factorSymbol.VariableNames
|
---|
1774 | .ToDictionary(varName => varName, varName => ds.GetStringValues(varName).Distinct().ToList());
|
---|
1775 | }
|
---|
1776 | }
|
---|
1777 | foreach (var factorSymbol in grammar.Symbols.OfType<FactorVariable>()) {
|
---|
1778 | if (!factorSymbol.Fixed) {
|
---|
1779 | factorSymbol.AllVariableNames = problemData.InputVariables.Select(x => x.Value).Where(x => ds.VariableHasType<string>(x));
|
---|
1780 | factorSymbol.VariableNames = problemData.AllowedInputVariables.Where(x => ds.VariableHasType<string>(x));
|
---|
1781 | factorSymbol.VariableValues = factorSymbol.VariableNames
|
---|
1782 | .ToDictionary(varName => varName,
|
---|
1783 | varName => ds.GetStringValues(varName).Distinct()
|
---|
1784 | .Select((n, i) => Tuple.Create(n, i))
|
---|
1785 | .ToDictionary(tup => tup.Item1, tup => tup.Item2));
|
---|
1786 | }
|
---|
1787 | }
|
---|
1788 |
|
---|
1789 | grammar.ConfigureAsDefaultRegressionGrammar();
|
---|
1790 |
|
---|
1791 | // configure initialization of constants
|
---|
1792 | var constSy = (Constant)grammar.GetSymbol("Constant");
|
---|
1793 | // max and min are only relevant for initialization
|
---|
1794 | constSy.MaxValue = +1.0e-1; // small initial values for constant opt
|
---|
1795 | constSy.MinValue = -1.0e-1;
|
---|
1796 | constSy.MultiplicativeManipulatorSigma = 1.0; // allow large jumps for manipulation
|
---|
1797 | constSy.ManipulatorMu = 0.0;
|
---|
1798 | constSy.ManipulatorSigma = 1.0; // allow large jumps
|
---|
1799 |
|
---|
1800 | // configure initialization of variables
|
---|
1801 | var varSy = (Variable)grammar.GetSymbol("Variable");
|
---|
1802 | // fix variable weights to 1.0
|
---|
1803 | varSy.WeightMu = 1.0;
|
---|
1804 | varSy.WeightSigma = 0.0;
|
---|
1805 | varSy.WeightManipulatorMu = 0.0;
|
---|
1806 | varSy.WeightManipulatorSigma = 0.0;
|
---|
1807 | varSy.MultiplicativeWeightManipulatorSigma = 0.0;
|
---|
1808 |
|
---|
1809 | foreach (var f in FunctionSet) {
|
---|
1810 | grammar.GetSymbol(f.Value).Enabled = FunctionSet.ItemChecked(f);
|
---|
1811 | }
|
---|
1812 |
|
---|
1813 | grammar.FinishedGrammarManipulation();
|
---|
1814 | return grammar;
|
---|
1815 | // // whenever ProblemData is changed we create a new grammar with the necessary symbols
|
---|
1816 | // var g = new SimpleSymbolicExpressionGrammar();
|
---|
1817 | // var unaryFunc = new string[] { "sin", "cos", "sqr" };
|
---|
1818 | // var binaryFunc = new string[] { "+", "-", "*", "%" };
|
---|
1819 | // foreach (var func in unaryFunc) {
|
---|
1820 | // if (FunctionSet.CheckedItems.Any(ci => ci.Value.Value == func)) g.AddSymbol(func, 1, 1);
|
---|
1821 | // }
|
---|
1822 | // foreach (var func in binaryFunc) {
|
---|
1823 | // if (FunctionSet.CheckedItems.Any(ci => ci.Value.Value == func)) g.AddSymbol(func, 2, 2);
|
---|
1824 | // }
|
---|
1825 | //
|
---|
1826 | // foreach (var variableName in ProblemData.AllowedInputVariables.Union(TargetVariables.CheckedItems.Select(i => i.Value.Value)))
|
---|
1827 | // g.AddTerminalSymbol(variableName);
|
---|
1828 | //
|
---|
1829 | // // generate symbols for numeric parameters for which the value is optimized using AutoDiff
|
---|
1830 | // // we generate multiple symbols to balance the probability for selecting a numeric parameter in the generation of random trees
|
---|
1831 | // var numericConstantsFactor = 2.0;
|
---|
1832 | // for (int i = 0; i < numericConstantsFactor * (ProblemData.AllowedInputVariables.Count() + TargetVariables.CheckedItems.Count()); i++) {
|
---|
1833 | // g.AddTerminalSymbol("θ" + i); // numeric parameter for which the value is optimized using AutoDiff
|
---|
1834 | // }
|
---|
1835 | //
|
---|
1836 | // // generate symbols for latent variables
|
---|
1837 | // for (int i = 1; i <= NumberOfLatentVariables; i++) {
|
---|
1838 | // g.AddTerminalSymbol("λ" + i); // numeric parameter for which the value is optimized using AutoDiff
|
---|
1839 | // }
|
---|
1840 | //
|
---|
1841 | // return g;
|
---|
1842 | }
|
---|
1843 | #endregion
|
---|
1844 |
|
---|
1845 |
|
---|
1846 | #region Import
|
---|
1847 | public void Load(Problem problem) {
|
---|
1848 | // transfer parameter values from problem parameter
|
---|
1849 | this.ProblemData = problem.ProblemData;
|
---|
1850 | this.TrainingEpisodesParameter.Value = problem.TrainingEpisodesParameter.Value;
|
---|
1851 | this.TargetVariablesParameter.Value = problem.TargetVariablesParameter.Value;
|
---|
1852 | this.Name = problem.Name;
|
---|
1853 | this.Description = problem.Description;
|
---|
1854 | }
|
---|
1855 | #endregion
|
---|
1856 |
|
---|
1857 |
|
---|
1858 | // TODO: for integration we only need a part of the data that we need for optimization
|
---|
1859 |
|
---|
1860 | public class OptimizationData {
|
---|
1861 | public readonly ISymbolicExpressionTree[] trees;
|
---|
1862 | public readonly string[] targetVariables;
|
---|
1863 | public readonly IRegressionProblemData problemData;
|
---|
1864 | public readonly double[][] targetValues;
|
---|
1865 | public readonly double[] inverseStandardDeviation;
|
---|
1866 | public readonly IntRange[] episodes;
|
---|
1867 | public readonly int numericIntegrationSteps;
|
---|
1868 | public readonly string[] latentVariables;
|
---|
1869 | public readonly string odeSolver;
|
---|
1870 | public readonly NodeValueLookup nodeValueLookup;
|
---|
1871 | public readonly int[] rows;
|
---|
1872 | internal readonly string[] variables;
|
---|
1873 |
|
---|
1874 | public OptimizationData(ISymbolicExpressionTree[] trees, string[] targetVars, string[] inputVariables,
|
---|
1875 | IRegressionProblemData problemData,
|
---|
1876 | double[][] targetValues,
|
---|
1877 | IntRange[] episodes,
|
---|
1878 | int numericIntegrationSteps, string[] latentVariables, string odeSolver) {
|
---|
1879 | this.trees = trees;
|
---|
1880 | this.targetVariables = targetVars;
|
---|
1881 | this.problemData = problemData;
|
---|
1882 | this.targetValues = targetValues;
|
---|
1883 | this.variables = inputVariables;
|
---|
1884 | if (targetValues != null) {
|
---|
1885 | this.inverseStandardDeviation = new double[targetValues.Length];
|
---|
1886 | for (int i = 0; i < targetValues.Length; i++) {
|
---|
1887 | // calculate variance for each episode separately and calc the average
|
---|
1888 | var epStartIdx = 0;
|
---|
1889 | var stdevs = new List<double>();
|
---|
1890 | foreach (var ep in episodes) {
|
---|
1891 | var epValues = targetValues[i].Skip(epStartIdx).Take(ep.Size);
|
---|
1892 | stdevs.Add(epValues.StandardDeviation());
|
---|
1893 | epStartIdx += ep.Size;
|
---|
1894 | }
|
---|
1895 | inverseStandardDeviation[i] = 1.0 / stdevs.Average();
|
---|
1896 | }
|
---|
1897 | } else
|
---|
1898 | this.inverseStandardDeviation = Enumerable.Repeat(1.0, trees.Length).ToArray();
|
---|
1899 | this.episodes = episodes;
|
---|
1900 | this.numericIntegrationSteps = numericIntegrationSteps;
|
---|
1901 | this.latentVariables = latentVariables;
|
---|
1902 | this.odeSolver = odeSolver;
|
---|
1903 | this.nodeValueLookup = new NodeValueLookup(trees);
|
---|
1904 | this.rows = episodes.SelectMany(ep => Enumerable.Range(ep.Start, ep.Size)).ToArray();
|
---|
1905 | }
|
---|
1906 | }
|
---|
1907 |
|
---|
1908 | public class NodeValueLookup {
|
---|
1909 | private readonly Dictionary<ISymbolicExpressionTreeNode, Tuple<double, Vector>> node2val = new Dictionary<ISymbolicExpressionTreeNode, Tuple<double, Vector>>();
|
---|
1910 | private readonly Dictionary<string, List<ISymbolicExpressionTreeNode>> name2nodes = new Dictionary<string, List<ISymbolicExpressionTreeNode>>();
|
---|
1911 | private readonly ConstantTreeNode[] constantNodes;
|
---|
1912 | private readonly Vector[] constantGradientVectors;
|
---|
1913 |
|
---|
1914 | // private readonly Dictionary<int, ISymbolicExpressionTreeNode> paramIdx2node = new Dictionary<int, ISymbolicExpressionTreeNode>();
|
---|
1915 |
|
---|
1916 | public double NodeValue(ISymbolicExpressionTreeNode node) => node2val[node].Item1;
|
---|
1917 | public Vector NodeGradient(ISymbolicExpressionTreeNode node) => node2val[node].Item2;
|
---|
1918 |
|
---|
1919 | public NodeValueLookup(ISymbolicExpressionTree[] trees) {
|
---|
1920 |
|
---|
1921 | this.constantNodes = trees.SelectMany(t => t.IterateNodesPrefix().OfType<ConstantTreeNode>()).ToArray();
|
---|
1922 | constantGradientVectors = new Vector[constantNodes.Length];
|
---|
1923 | for (int paramIdx = 0; paramIdx < constantNodes.Length; paramIdx++) {
|
---|
1924 | constantGradientVectors[paramIdx] = Vector.CreateIndicator(length: constantNodes.Length, idx: paramIdx);
|
---|
1925 |
|
---|
1926 | var node = constantNodes[paramIdx];
|
---|
1927 | node2val[node] = Tuple.Create(node.Value, constantGradientVectors[paramIdx]);
|
---|
1928 | }
|
---|
1929 |
|
---|
1930 | foreach (var tree in trees) {
|
---|
1931 | foreach (var node in tree.IterateNodesPrefix().Where(IsVariableNode)) {
|
---|
1932 | var varName = GetVariableName(node);
|
---|
1933 | if (!name2nodes.TryGetValue(varName, out List<ISymbolicExpressionTreeNode> nodes)) {
|
---|
1934 | nodes = new List<ISymbolicExpressionTreeNode>();
|
---|
1935 | name2nodes.Add(varName, nodes);
|
---|
1936 | }
|
---|
1937 | nodes.Add(node);
|
---|
1938 | SetVariableValue(varName, 0.0); // this value is updated in the prediction loop
|
---|
1939 | }
|
---|
1940 | }
|
---|
1941 | }
|
---|
1942 |
|
---|
1943 | public int ParameterCount => constantNodes.Length;
|
---|
1944 |
|
---|
1945 | public void SetVariableValue(string variableName, double val) {
|
---|
1946 | SetVariableValue(variableName, val, Vector.Zero);
|
---|
1947 | }
|
---|
1948 | public Tuple<double, Vector> GetVariableValue(string variableName) {
|
---|
1949 | return node2val[name2nodes[variableName].First()];
|
---|
1950 | }
|
---|
1951 | public void SetVariableValue(string variableName, double val, Vector dVal) {
|
---|
1952 | if (name2nodes.TryGetValue(variableName, out List<ISymbolicExpressionTreeNode> nodes)) {
|
---|
1953 | nodes.ForEach(n => node2val[n] = Tuple.Create(val, dVal));
|
---|
1954 | } else {
|
---|
1955 | var fakeNode = new VariableTreeNode(new Variable());
|
---|
1956 | fakeNode.Weight = 1.0;
|
---|
1957 | fakeNode.VariableName = variableName;
|
---|
1958 | var newNodeList = new List<ISymbolicExpressionTreeNode>();
|
---|
1959 | newNodeList.Add(fakeNode);
|
---|
1960 | name2nodes.Add(variableName, newNodeList);
|
---|
1961 | node2val[fakeNode] = Tuple.Create(val, dVal);
|
---|
1962 | }
|
---|
1963 | }
|
---|
1964 |
|
---|
1965 | internal void UpdateParamValues(double[] x) {
|
---|
1966 | for (int i = 0; i < x.Length; i++) {
|
---|
1967 | constantNodes[i].Value = x[i];
|
---|
1968 | node2val[constantNodes[i]] = Tuple.Create(x[i], constantGradientVectors[i]);
|
---|
1969 | }
|
---|
1970 | }
|
---|
1971 | }
|
---|
1972 | }
|
---|
1973 | }
|
---|