1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2019 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Linq;
|
---|
25 | using HeuristicLab.Common;
|
---|
26 | using HeuristicLab.Problems.DataAnalysis;
|
---|
27 |
|
---|
28 | namespace HeuristicLab.DataPreprocessing {
|
---|
29 | public class ProblemDataCreator {
|
---|
30 | private readonly PreprocessingContext context;
|
---|
31 |
|
---|
32 | private Dataset ExportedDataset {
|
---|
33 | get { return context.Data.ExportToDataset(); }
|
---|
34 | }
|
---|
35 |
|
---|
36 | private IList<ITransformation> Transformations {
|
---|
37 | get { return context.Data.Transformations; }
|
---|
38 | }
|
---|
39 |
|
---|
40 | public ProblemDataCreator(PreprocessingContext context) {
|
---|
41 | this.context = context;
|
---|
42 | }
|
---|
43 |
|
---|
44 | public IDataAnalysisProblemData CreateProblemData(IDataAnalysisProblemData oldProblemData) {
|
---|
45 | if (context.Data.Rows == 0 || context.Data.Columns == 0) return null;
|
---|
46 |
|
---|
47 | IDataAnalysisProblemData problemData;
|
---|
48 |
|
---|
49 | if (oldProblemData is TimeSeriesPrognosisProblemData) {
|
---|
50 | problemData = CreateTimeSeriesPrognosisData((TimeSeriesPrognosisProblemData)oldProblemData);
|
---|
51 | } else if (oldProblemData is RegressionProblemData) {
|
---|
52 | problemData = CreateRegressionData((RegressionProblemData)oldProblemData);
|
---|
53 | } else if (oldProblemData is ClassificationProblemData) {
|
---|
54 | problemData = CreateClassificationData((ClassificationProblemData)oldProblemData);
|
---|
55 | } else if (oldProblemData is ClusteringProblemData) {
|
---|
56 | problemData = CreateClusteringData((ClusteringProblemData)oldProblemData);
|
---|
57 | } else {
|
---|
58 | throw new NotImplementedException("The type of the DataAnalysisProblemData is not supported.");
|
---|
59 | }
|
---|
60 |
|
---|
61 | SetTrainingAndTestPartition(problemData);
|
---|
62 | // set the input variables to the correct checked state
|
---|
63 | var inputVariables = oldProblemData.InputVariables.ToDictionary(x => x.Value, x => x);
|
---|
64 | foreach (var variable in problemData.InputVariables) {
|
---|
65 | bool isChecked = inputVariables.ContainsKey(variable.Value) && oldProblemData.InputVariables.ItemChecked(inputVariables[variable.Value]);
|
---|
66 | problemData.InputVariables.SetItemCheckedState(variable, isChecked);
|
---|
67 | }
|
---|
68 |
|
---|
69 | return problemData;
|
---|
70 | }
|
---|
71 |
|
---|
72 | private IDataAnalysisProblemData CreateTimeSeriesPrognosisData(TimeSeriesPrognosisProblemData oldProblemData) {
|
---|
73 | var targetVariable = oldProblemData.TargetVariable;
|
---|
74 | if (!context.Data.VariableNames.Contains(targetVariable))
|
---|
75 | targetVariable = context.Data.VariableNames.First();
|
---|
76 | var inputVariables = GetDoubleInputVariables(targetVariable);
|
---|
77 | var newProblemData = new TimeSeriesPrognosisProblemData(ExportedDataset, inputVariables, targetVariable, Transformations) {
|
---|
78 | TrainingHorizon = oldProblemData.TrainingHorizon,
|
---|
79 | TestHorizon = oldProblemData.TestHorizon
|
---|
80 | };
|
---|
81 | return newProblemData;
|
---|
82 | }
|
---|
83 |
|
---|
84 | private IDataAnalysisProblemData CreateRegressionData(RegressionProblemData oldProblemData) {
|
---|
85 | var targetVariable = oldProblemData.TargetVariable;
|
---|
86 | if (!context.Data.VariableNames.Contains(targetVariable))
|
---|
87 | targetVariable = context.Data.VariableNames.First();
|
---|
88 | var inputVariables = GetDoubleInputVariables(targetVariable);
|
---|
89 | var newProblemData = new RegressionProblemData(ExportedDataset, inputVariables, targetVariable, Transformations);
|
---|
90 | return newProblemData;
|
---|
91 | }
|
---|
92 |
|
---|
93 | private IDataAnalysisProblemData CreateClassificationData(ClassificationProblemData oldProblemData) {
|
---|
94 | var targetVariable = oldProblemData.TargetVariable;
|
---|
95 | if (!context.Data.VariableNames.Contains(targetVariable))
|
---|
96 | targetVariable = context.Data.VariableNames.First();
|
---|
97 | var inputVariables = GetDoubleInputVariables(targetVariable);
|
---|
98 | var newProblemData = new ClassificationProblemData(ExportedDataset, inputVariables, targetVariable, Transformations) {
|
---|
99 | PositiveClass = oldProblemData.PositiveClass
|
---|
100 | };
|
---|
101 | return newProblemData;
|
---|
102 | }
|
---|
103 |
|
---|
104 | private IDataAnalysisProblemData CreateClusteringData(ClusteringProblemData oldProblemData) {
|
---|
105 | return new ClusteringProblemData(ExportedDataset, GetDoubleInputVariables(String.Empty), Transformations);
|
---|
106 | }
|
---|
107 |
|
---|
108 | private void SetTrainingAndTestPartition(IDataAnalysisProblemData problemData) {
|
---|
109 | var ppData = context.Data;
|
---|
110 |
|
---|
111 | problemData.TrainingPartition.Start = ppData.TrainingPartition.Start;
|
---|
112 | problemData.TrainingPartition.End = ppData.TrainingPartition.End;
|
---|
113 | problemData.TestPartition.Start = ppData.TestPartition.Start;
|
---|
114 | problemData.TestPartition.End = ppData.TestPartition.End;
|
---|
115 | }
|
---|
116 |
|
---|
117 | private IEnumerable<string> GetDoubleInputVariables(string targetVariable) {
|
---|
118 | var variableNames = new List<string>();
|
---|
119 | for (int i = 0; i < context.Data.Columns; ++i) {
|
---|
120 | var variableName = context.Data.GetVariableName(i);
|
---|
121 | if (context.Data.VariableHasType<double>(i)
|
---|
122 | && variableName != targetVariable
|
---|
123 | && IsNotConstantInputVariable(context.Data.GetValues<double>(i))) {
|
---|
124 |
|
---|
125 | variableNames.Add(variableName);
|
---|
126 | }
|
---|
127 | }
|
---|
128 | return variableNames;
|
---|
129 | }
|
---|
130 |
|
---|
131 | private bool IsNotConstantInputVariable(IList<double> list) {
|
---|
132 | return context.Data.TrainingPartition.End - context.Data.TrainingPartition.Start > 1 || list.Range() > 0;
|
---|
133 | }
|
---|
134 | }
|
---|
135 | }
|
---|