1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2019 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Linq;
|
---|
25 |
|
---|
26 | namespace HeuristicLab.Algorithms.DataAnalysis {
|
---|
27 | internal static class Util {
|
---|
28 | public static double ScalarProd(double[] v, double[] u) {
|
---|
29 | if (v.Length != u.Length) throw new InvalidOperationException();
|
---|
30 | double prod = 0.0;
|
---|
31 | for (int i = 0; i < v.Length; i++)
|
---|
32 | prod += v[i] * u[i];
|
---|
33 | return prod;
|
---|
34 | }
|
---|
35 |
|
---|
36 | public static double SqrDist(IEnumerable<double> x, IEnumerable<double> y) {
|
---|
37 | return x.Zip(y, (a, b) => (a - b) * (a - b)).Sum();
|
---|
38 | }
|
---|
39 |
|
---|
40 | public static double SqrDist(double x, double y) {
|
---|
41 | double d = x - y;
|
---|
42 | return d * d;
|
---|
43 | }
|
---|
44 |
|
---|
45 | public static double SqrDist(double[,] x, int i, int j, int[] columnIndices, double scale = 1.0) {
|
---|
46 | return SqrDist(x, i, x, j, columnIndices, scale);
|
---|
47 | }
|
---|
48 |
|
---|
49 | public static double SqrDist(double[,] x, int i, double[,] xt, int j, int[] columnIndices, double scale = 1.0) {
|
---|
50 | double ss = 0.0;
|
---|
51 | if (columnIndices == null) columnIndices = Enumerable.Range(0, x.GetLength(1)).ToArray();
|
---|
52 | for (int c = 0; c < columnIndices.Length; c++) {
|
---|
53 | var columnIndex = columnIndices[c];
|
---|
54 | double d = x[i, columnIndex] - xt[j, columnIndex];
|
---|
55 | ss += d * d;
|
---|
56 | }
|
---|
57 | return scale * scale * ss;
|
---|
58 | }
|
---|
59 |
|
---|
60 | public static double SqrDist(double[,] x, int i, int j, double[] scale, int[] columnIndices) {
|
---|
61 | return SqrDist(x, i, x, j, scale, columnIndices);
|
---|
62 | }
|
---|
63 |
|
---|
64 | public static double SqrDist(double[,] x, int i, double[,] xt, int j, double[] scale, int[] columnIndices) {
|
---|
65 | double ss = 0.0;
|
---|
66 | int scaleIndex = 0;
|
---|
67 | for (int c = 0; c < columnIndices.Length; c++) {
|
---|
68 | var columnIndex = columnIndices[c];
|
---|
69 | double d = x[i, columnIndex] - xt[j, columnIndex];
|
---|
70 | ss += d * d * scale[scaleIndex] * scale[scaleIndex];
|
---|
71 | scaleIndex++;
|
---|
72 | }
|
---|
73 | // must be at the end of scale after iterating over columnIndices
|
---|
74 | if (scaleIndex != scale.Length)
|
---|
75 | throw new ArgumentException("Lengths of scales and covariance functions does not match.");
|
---|
76 | return ss;
|
---|
77 | }
|
---|
78 | public static double ScalarProd(double[,] x, int i, int j, int[] columnIndices, double scale = 1.0) {
|
---|
79 | return ScalarProd(x, i, x, j, columnIndices, scale);
|
---|
80 | }
|
---|
81 |
|
---|
82 | public static double ScalarProd(double[,] x, int i, double[,] xt, int j, int[] columnIndices, double scale = 1.0) {
|
---|
83 | double sum = 0.0;
|
---|
84 | for (int c = 0; c < columnIndices.Length; c++) {
|
---|
85 | var columnIndex = columnIndices[c];
|
---|
86 | sum += x[i, columnIndex] * xt[j, columnIndex];
|
---|
87 | }
|
---|
88 | return scale * scale * sum;
|
---|
89 | }
|
---|
90 | public static double ScalarProd(double[,] x, int i, int j, double[] scale, int[] columnIndices) {
|
---|
91 | return ScalarProd(x, i, x, j, scale, columnIndices);
|
---|
92 | }
|
---|
93 |
|
---|
94 | public static double ScalarProd(double[,] x, int i, double[,] xt, int j, double[] scale, int[] columnIndices) {
|
---|
95 | double sum = 0.0;
|
---|
96 | int scaleIndex = 0;
|
---|
97 | for (int c = 0; c < columnIndices.Length; c++, scaleIndex++) {
|
---|
98 | var columnIndex = columnIndices[c];
|
---|
99 | sum += x[i, columnIndex] * scale[scaleIndex] * xt[j, columnIndex] * scale[scaleIndex];
|
---|
100 | }
|
---|
101 | // must be at the end of scale after iterating over columnIndices
|
---|
102 | if (scaleIndex != scale.Length)
|
---|
103 | throw new ArgumentException("Lengths of scales and covariance functions does not match.");
|
---|
104 |
|
---|
105 | return sum;
|
---|
106 | }
|
---|
107 |
|
---|
108 | public static IEnumerable<double> GetRow(double[,] x, int r) {
|
---|
109 | int cols = x.GetLength(1);
|
---|
110 | return GetRow(x, r, Enumerable.Range(0, cols));
|
---|
111 | }
|
---|
112 | public static IEnumerable<double> GetRow(double[,] x, int r, IEnumerable<int> columnIndices) {
|
---|
113 | return columnIndices.Select(c => x[r, c]);
|
---|
114 | }
|
---|
115 | public static IEnumerable<double> GetCol(double[,] x, int c) {
|
---|
116 | int rows = x.GetLength(0);
|
---|
117 | return Enumerable.Range(0, rows).Select(r => x[r, c]);
|
---|
118 | }
|
---|
119 | }
|
---|
120 | }
|
---|