1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2019 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Linq;
|
---|
25 | using HeuristicLab.Common;
|
---|
26 | using HeuristicLab.Core;
|
---|
27 | using HeuristicLab.Data;
|
---|
28 | using HeuristicLab.Parameters;
|
---|
29 | using HEAL.Attic;
|
---|
30 |
|
---|
31 | namespace HeuristicLab.Algorithms.DataAnalysis {
|
---|
32 | [StorableType("62C25AD5-F41F-4CC2-B589-A92CCEE7AC88")]
|
---|
33 | [Item(Name = "CovariancePiecewisePolynomial",
|
---|
34 | Description = "Piecewise polynomial covariance function with compact support for Gaussian processes.")]
|
---|
35 | public sealed class CovariancePiecewisePolynomial : ParameterizedNamedItem, ICovarianceFunction {
|
---|
36 | public IValueParameter<DoubleValue> LengthParameter {
|
---|
37 | get { return (IValueParameter<DoubleValue>)Parameters["Length"]; }
|
---|
38 | }
|
---|
39 |
|
---|
40 | public IValueParameter<DoubleValue> ScaleParameter {
|
---|
41 | get { return (IValueParameter<DoubleValue>)Parameters["Scale"]; }
|
---|
42 | }
|
---|
43 |
|
---|
44 | public IConstrainedValueParameter<IntValue> VParameter {
|
---|
45 | get { return (IConstrainedValueParameter<IntValue>)Parameters["V"]; }
|
---|
46 | }
|
---|
47 | private bool HasFixedLengthParameter {
|
---|
48 | get { return LengthParameter.Value != null; }
|
---|
49 | }
|
---|
50 | private bool HasFixedScaleParameter {
|
---|
51 | get { return ScaleParameter.Value != null; }
|
---|
52 | }
|
---|
53 |
|
---|
54 | [StorableConstructor]
|
---|
55 | private CovariancePiecewisePolynomial(StorableConstructorFlag _) : base(_) {
|
---|
56 | }
|
---|
57 |
|
---|
58 | private CovariancePiecewisePolynomial(CovariancePiecewisePolynomial original, Cloner cloner)
|
---|
59 | : base(original, cloner) {
|
---|
60 | }
|
---|
61 |
|
---|
62 | public CovariancePiecewisePolynomial()
|
---|
63 | : base() {
|
---|
64 | Name = ItemName;
|
---|
65 | Description = ItemDescription;
|
---|
66 |
|
---|
67 | Parameters.Add(new OptionalValueParameter<DoubleValue>("Length", "The length parameter of the isometric piecewise polynomial covariance function."));
|
---|
68 | Parameters.Add(new OptionalValueParameter<DoubleValue>("Scale", "The scale parameter of the piecewise polynomial covariance function."));
|
---|
69 |
|
---|
70 | var validValues = new ItemSet<IntValue>(new IntValue[] {
|
---|
71 | (IntValue)(new IntValue().AsReadOnly()),
|
---|
72 | (IntValue)(new IntValue(1).AsReadOnly()),
|
---|
73 | (IntValue)(new IntValue(2).AsReadOnly()),
|
---|
74 | (IntValue)(new IntValue(3).AsReadOnly()) });
|
---|
75 | Parameters.Add(new ConstrainedValueParameter<IntValue>("V", "The v parameter of the piecewise polynomial function (allowed values 0, 1, 2, 3).", validValues, validValues.First()));
|
---|
76 | }
|
---|
77 |
|
---|
78 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
79 | return new CovariancePiecewisePolynomial(this, cloner);
|
---|
80 | }
|
---|
81 |
|
---|
82 | public int GetNumberOfParameters(int numberOfVariables) {
|
---|
83 | return
|
---|
84 | (HasFixedLengthParameter ? 0 : 1) +
|
---|
85 | (HasFixedScaleParameter ? 0 : 1);
|
---|
86 | }
|
---|
87 |
|
---|
88 | public void SetParameter(double[] p) {
|
---|
89 | double @const, scale;
|
---|
90 | GetParameterValues(p, out @const, out scale);
|
---|
91 | LengthParameter.Value = new DoubleValue(@const);
|
---|
92 | ScaleParameter.Value = new DoubleValue(scale);
|
---|
93 | }
|
---|
94 |
|
---|
95 | private void GetParameterValues(double[] p, out double length, out double scale) {
|
---|
96 | // gather parameter values
|
---|
97 | int n = 0;
|
---|
98 | if (HasFixedLengthParameter) {
|
---|
99 | length = LengthParameter.Value.Value;
|
---|
100 | } else {
|
---|
101 | length = Math.Exp(p[n]);
|
---|
102 | n++;
|
---|
103 | }
|
---|
104 |
|
---|
105 | if (HasFixedScaleParameter) {
|
---|
106 | scale = ScaleParameter.Value.Value;
|
---|
107 | } else {
|
---|
108 | scale = Math.Exp(2 * p[n]);
|
---|
109 | n++;
|
---|
110 | }
|
---|
111 | if (p.Length != n) throw new ArgumentException("The length of the parameter vector does not match the number of free parameters for CovariancePiecewisePolynomial", "p");
|
---|
112 | }
|
---|
113 |
|
---|
114 | public ParameterizedCovarianceFunction GetParameterizedCovarianceFunction(double[] p, int[] columnIndices) {
|
---|
115 | double length, scale;
|
---|
116 | int v = VParameter.Value.Value;
|
---|
117 | GetParameterValues(p, out length, out scale);
|
---|
118 | var fixedLength = HasFixedLengthParameter;
|
---|
119 | var fixedScale = HasFixedScaleParameter;
|
---|
120 | int exp = (int)Math.Floor(columnIndices.Count() / 2.0) + v + 1;
|
---|
121 |
|
---|
122 | Func<double, double> f;
|
---|
123 | Func<double, double> df;
|
---|
124 | switch (v) {
|
---|
125 | case 0:
|
---|
126 | f = (r) => 1.0;
|
---|
127 | df = (r) => 0.0;
|
---|
128 | break;
|
---|
129 | case 1:
|
---|
130 | f = (r) => 1 + (exp + 1) * r;
|
---|
131 | df = (r) => exp + 1;
|
---|
132 | break;
|
---|
133 | case 2:
|
---|
134 | f = (r) => 1 + (exp + 2) * r + (exp * exp + 4.0 * exp + 3) / 3.0 * r * r;
|
---|
135 | df = (r) => (exp + 2) + 2 * (exp * exp + 4.0 * exp + 3) / 3.0 * r;
|
---|
136 | break;
|
---|
137 | case 3:
|
---|
138 | f = (r) => 1 + (exp + 3) * r + (6.0 * exp * exp + 36 * exp + 45) / 15.0 * r * r +
|
---|
139 | (exp * exp * exp + 9 * exp * exp + 23 * exp + 45) / 15.0 * r * r * r;
|
---|
140 | df = (r) => (exp + 3) + 2 * (6.0 * exp * exp + 36 * exp + 45) / 15.0 * r +
|
---|
141 | (exp * exp * exp + 9 * exp * exp + 23 * exp + 45) / 5.0 * r * r;
|
---|
142 | break;
|
---|
143 | default: throw new ArgumentException();
|
---|
144 | }
|
---|
145 |
|
---|
146 | // create functions
|
---|
147 | var cov = new ParameterizedCovarianceFunction();
|
---|
148 | cov.Covariance = (x, i, j) => {
|
---|
149 | double k = Math.Sqrt(Util.SqrDist(x, i, x, j, columnIndices, 1.0 / length));
|
---|
150 | return scale * Math.Pow(Math.Max(1 - k, 0), exp + v) * f(k);
|
---|
151 | };
|
---|
152 | cov.CrossCovariance = (x, xt, i, j) => {
|
---|
153 | double k = Math.Sqrt(Util.SqrDist(x, i, xt, j, columnIndices, 1.0 / length));
|
---|
154 | return scale * Math.Pow(Math.Max(1 - k, 0), exp + v) * f(k);
|
---|
155 | };
|
---|
156 | cov.CovarianceGradient = (x, i, j) => GetGradient(x, i, j, length, scale, v, exp, f, df, columnIndices, fixedLength, fixedScale);
|
---|
157 | return cov;
|
---|
158 | }
|
---|
159 |
|
---|
160 | private static IList<double> GetGradient(double[,] x, int i, int j, double length, double scale, int v, double exp, Func<double, double> f, Func<double, double> df, int[] columnIndices,
|
---|
161 | bool fixedLength, bool fixedScale) {
|
---|
162 | double k = Math.Sqrt(Util.SqrDist(x, i, x, j, columnIndices, 1.0 / length));
|
---|
163 | var g = new List<double>(2);
|
---|
164 | if (!fixedLength) g.Add(scale * Math.Pow(Math.Max(1.0 - k, 0), exp + v - 1) * k * ((exp + v) * f(k) - Math.Max(1 - k, 0) * df(k)));
|
---|
165 | if (!fixedScale) g.Add(2.0 * scale * Math.Pow(Math.Max(1 - k, 0), exp + v) * f(k));
|
---|
166 | return g;
|
---|
167 | }
|
---|
168 | }
|
---|
169 | }
|
---|