[16601] | 1 | using System;
|
---|
| 2 | using System.Collections.Generic;
|
---|
| 3 | using HeuristicLab.Data;
|
---|
| 4 | using HeuristicLab.Problems.DynamicalSystemsModelling;
|
---|
| 5 | using HeuristicLab.Random;
|
---|
| 6 | using Microsoft.VisualStudio.TestTools.UnitTesting;
|
---|
| 7 |
|
---|
| 8 | namespace AutoDiffForDynamicalModelsTest {
|
---|
| 9 | [TestClass]
|
---|
| 10 | public class TestOdeIdentification {
|
---|
| 11 | [TestMethod]
|
---|
| 12 | public void RunOdeIdentification() {
|
---|
| 13 | var alg = new OdeParameterIdentification();
|
---|
| 14 | var dynProb = new Problem();
|
---|
| 15 | var parser = new HeuristicLab.Problems.Instances.DataAnalysis.TableFileParser();
|
---|
[16602] | 16 | // var fileName = @"C:\reps\HEAL\EuroCAST - Kronberger\DataGeneration\test.csv";
|
---|
| 17 | var fileName = @"D:\heal\documents\trunk\Publications\2019\EuroCAST\Kronberger\DataGeneration\test.csv";
|
---|
[16601] | 18 | parser.Parse(fileName, true);
|
---|
| 19 | var prov = new HeuristicLab.Problems.Instances.DataAnalysis.RegressionCSVInstanceProvider();
|
---|
| 20 | var regressionProblemData = prov.ImportData(fileName);
|
---|
| 21 | regressionProblemData.TrainingPartition.Start = 0;
|
---|
| 22 | regressionProblemData.TrainingPartition.End = 40;
|
---|
| 23 | regressionProblemData.TestPartition.Start = 41;
|
---|
| 24 | var allowedInputs = new List<string>(); // empty
|
---|
| 25 | var targets = new List<string>(new[] { "x1", "x2", "v" });
|
---|
| 26 | foreach (var checkedItem in regressionProblemData.InputVariables) {
|
---|
| 27 | regressionProblemData.InputVariables.SetItemCheckedState(checkedItem, allowedInputs.Contains(checkedItem.Value));
|
---|
| 28 | }
|
---|
| 29 | dynProb.Load(regressionProblemData);
|
---|
| 30 |
|
---|
| 31 | foreach (var checkedItem in dynProb.TargetVariables) {
|
---|
| 32 | dynProb.TargetVariables.SetItemCheckedState(checkedItem, targets.Contains(checkedItem.Value));
|
---|
| 33 | }
|
---|
| 34 |
|
---|
| 35 | dynProb.TrainingEpisodesParameter.Value.Add(new IntRange(0, 40));
|
---|
| 36 | dynProb.NumericIntegrationStepsParameter.Value.Value = 1;
|
---|
| 37 |
|
---|
| 38 | var rand = new FastRandom(1234);
|
---|
| 39 | var expressions = new string[] { "v", "-v", "1.0*(x2-x1)" };
|
---|
| 40 |
|
---|
| 41 | alg.CreateSolution(dynProb, expressions, 200, rand);
|
---|
| 42 | Assert.AreEqual(6.8350792038369173E-20, ((DoubleValue)alg.Results["SNMSE"].Value).Value, 1E-8);
|
---|
| 43 | }
|
---|
[16610] | 44 | [TestMethod]
|
---|
| 45 | public void RunOdeIdentificationMultipleEpisodes() {
|
---|
| 46 | var alg = new OdeParameterIdentification();
|
---|
| 47 | var dynProb = new Problem();
|
---|
| 48 | var parser = new HeuristicLab.Problems.Instances.DataAnalysis.TableFileParser();
|
---|
| 49 | // var fileName = @"C:\reps\HEAL\EuroCAST - Kronberger\DataGeneration\test.csv";
|
---|
| 50 | var fileName = @"C:\reps\HEAL\EuroCAST - Kronberger\DataGeneration\s-system.csv";
|
---|
| 51 | parser.Parse(fileName, true);
|
---|
| 52 | var prov = new HeuristicLab.Problems.Instances.DataAnalysis.RegressionCSVInstanceProvider();
|
---|
| 53 | var regressionProblemData = prov.ImportData(fileName);
|
---|
| 54 | regressionProblemData.TrainingPartition.Start = 0;
|
---|
| 55 | regressionProblemData.TrainingPartition.End = 61;
|
---|
| 56 | regressionProblemData.TestPartition.Start = 61;
|
---|
| 57 | var allowedInputs = new List<string>(); // empty
|
---|
| 58 | var targets = new List<string>(new[] { "y1", "y2", "y3", "y4", "y5" });
|
---|
| 59 | foreach (var checkedItem in regressionProblemData.InputVariables) {
|
---|
| 60 | regressionProblemData.InputVariables.SetItemCheckedState(checkedItem, allowedInputs.Contains(checkedItem.Value));
|
---|
| 61 | }
|
---|
| 62 | dynProb.Load(regressionProblemData);
|
---|
| 63 |
|
---|
| 64 | foreach (var checkedItem in dynProb.TargetVariables) {
|
---|
| 65 | dynProb.TargetVariables.SetItemCheckedState(checkedItem, targets.Contains(checkedItem.Value));
|
---|
| 66 | }
|
---|
| 67 |
|
---|
| 68 | dynProb.TrainingEpisodesParameter.Value.Add(new IntRange(0, 30));
|
---|
| 69 | dynProb.TrainingEpisodesParameter.Value.Add(new IntRange(30, 61));
|
---|
| 70 | dynProb.NumericIntegrationStepsParameter.Value.Value = 1;
|
---|
| 71 |
|
---|
| 72 | var rand = new FastRandom(1234);
|
---|
| 73 | var expressions = new string[] {
|
---|
| 74 | "1.0*(y3*exp(log(y5)*0.1)) + 1.0*(y1*y1)",
|
---|
| 75 | "1.0*(y1*y1) + 1.0*(y2*y2)",
|
---|
| 76 | "1.0*exp(log(y2)*0.1) + 1.0*exp(log(y2)*0.1)*(y3*y3)",
|
---|
| 77 | "1.0*(y1*y1)*exp(log(y5)*0.1) + 1.0*(y4*y4)",
|
---|
| 78 | "1.0*(y4*y4)+1.0*(y5*y5)"
|
---|
| 79 | };
|
---|
| 80 |
|
---|
| 81 | alg.CreateSolution(dynProb, expressions, 200, rand);
|
---|
| 82 | Assert.AreEqual(0.0, ((DoubleValue)alg.Results["SNMSE"].Value).Value, 1E-8);
|
---|
| 83 | }
|
---|
[16601] | 84 | }
|
---|
| 85 | }
|
---|