1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2018 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using HeuristicLab.Common;
|
---|
25 |
|
---|
26 | namespace HeuristicLab.Problems.DataAnalysis {
|
---|
27 | public class ClassificationPerformanceMeasuresCalculator : DeepCloneable {
|
---|
28 |
|
---|
29 | public ClassificationPerformanceMeasuresCalculator(string positiveClassName, double positiveClassValue) {
|
---|
30 | this.positiveClassName = positiveClassName;
|
---|
31 | this.positiveClassValue = positiveClassValue;
|
---|
32 | Reset();
|
---|
33 | }
|
---|
34 |
|
---|
35 | protected ClassificationPerformanceMeasuresCalculator(ClassificationPerformanceMeasuresCalculator original, Cloner cloner)
|
---|
36 | : base(original, cloner) {
|
---|
37 | positiveClassName = original.positiveClassName;
|
---|
38 | positiveClassValue = original.positiveClassValue;
|
---|
39 | truePositiveCount = original.truePositiveCount;
|
---|
40 | falsePositiveCount = original.falsePositiveCount;
|
---|
41 | trueNegativeCount = original.trueNegativeCount;
|
---|
42 | falseNegativeCount = original.falseNegativeCount;
|
---|
43 | errorState = original.errorState;
|
---|
44 | }
|
---|
45 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
46 | return new ClassificationPerformanceMeasuresCalculator(this, cloner);
|
---|
47 | }
|
---|
48 |
|
---|
49 | #region Properties
|
---|
50 | private int truePositiveCount, falsePositiveCount, trueNegativeCount, falseNegativeCount;
|
---|
51 |
|
---|
52 | private readonly string positiveClassName;
|
---|
53 | public string PositiveClassName {
|
---|
54 | get { return positiveClassName; }
|
---|
55 | }
|
---|
56 |
|
---|
57 | private readonly double positiveClassValue;
|
---|
58 | public double PositiveClassValue {
|
---|
59 | get { return positiveClassValue; }
|
---|
60 | }
|
---|
61 | public double TruePositiveRate {
|
---|
62 | get {
|
---|
63 | double divisor = truePositiveCount + falseNegativeCount;
|
---|
64 | return divisor.IsAlmost(0) ? double.NaN : truePositiveCount / divisor;
|
---|
65 | }
|
---|
66 | }
|
---|
67 | public double TrueNegativeRate {
|
---|
68 | get {
|
---|
69 | double divisor = falsePositiveCount + trueNegativeCount;
|
---|
70 | return divisor.IsAlmost(0) ? double.NaN : trueNegativeCount / divisor;
|
---|
71 | }
|
---|
72 | }
|
---|
73 | public double PositivePredictiveValue {
|
---|
74 | get {
|
---|
75 | double divisor = truePositiveCount + falsePositiveCount;
|
---|
76 | return divisor.IsAlmost(0) ? double.NaN : truePositiveCount / divisor;
|
---|
77 | }
|
---|
78 | }
|
---|
79 | public double NegativePredictiveValue {
|
---|
80 | get {
|
---|
81 | double divisor = trueNegativeCount + falseNegativeCount;
|
---|
82 | return divisor.IsAlmost(0) ? double.NaN : trueNegativeCount / divisor;
|
---|
83 | }
|
---|
84 | }
|
---|
85 | public double FalsePositiveRate {
|
---|
86 | get {
|
---|
87 | double divisor = falsePositiveCount + trueNegativeCount;
|
---|
88 | return divisor.IsAlmost(0) ? double.NaN : falsePositiveCount / divisor;
|
---|
89 | }
|
---|
90 | }
|
---|
91 | public double FalseDiscoveryRate {
|
---|
92 | get {
|
---|
93 | double divisor = falsePositiveCount + truePositiveCount;
|
---|
94 | return divisor.IsAlmost(0) ? double.NaN : falsePositiveCount / divisor;
|
---|
95 | }
|
---|
96 | }
|
---|
97 |
|
---|
98 | private OnlineCalculatorError errorState;
|
---|
99 | public OnlineCalculatorError ErrorState {
|
---|
100 | get { return errorState; }
|
---|
101 | }
|
---|
102 | #endregion
|
---|
103 |
|
---|
104 | public void Reset() {
|
---|
105 | truePositiveCount = 0;
|
---|
106 | falseNegativeCount = 0;
|
---|
107 | trueNegativeCount = 0;
|
---|
108 | falseNegativeCount = 0;
|
---|
109 | errorState = OnlineCalculatorError.InsufficientElementsAdded;
|
---|
110 | }
|
---|
111 |
|
---|
112 | public void Add(double originalClassValue, double estimatedClassValue) {
|
---|
113 | // ignore cases where original is NaN completely
|
---|
114 | if (double.IsNaN(originalClassValue)) return;
|
---|
115 |
|
---|
116 | if (originalClassValue.IsAlmost(positiveClassValue)
|
---|
117 | || estimatedClassValue.IsAlmost(positiveClassValue)) { //positive class/positive class estimation
|
---|
118 | if (estimatedClassValue.IsAlmost(originalClassValue)) {
|
---|
119 | truePositiveCount++;
|
---|
120 | } else {
|
---|
121 | if (estimatedClassValue.IsAlmost(positiveClassValue)) //misclassification of the negative class
|
---|
122 | falsePositiveCount++;
|
---|
123 | else //misclassification of the positive class
|
---|
124 | falseNegativeCount++;
|
---|
125 | }
|
---|
126 | } else { //negative class/negative class estimation
|
---|
127 | //In a multiclass classification all misclassifications of the negative class
|
---|
128 | //will be treated as true negatives except on positive class estimations
|
---|
129 | trueNegativeCount++;
|
---|
130 | }
|
---|
131 |
|
---|
132 | errorState = OnlineCalculatorError.None; // number of (non-NaN) samples >= 1
|
---|
133 | }
|
---|
134 |
|
---|
135 | public void Calculate(IEnumerable<double> originalClassValues, IEnumerable<double> estimatedClassValues) {
|
---|
136 | IEnumerator<double> originalEnumerator = originalClassValues.GetEnumerator();
|
---|
137 | IEnumerator<double> estimatedEnumerator = estimatedClassValues.GetEnumerator();
|
---|
138 |
|
---|
139 | // always move forward both enumerators (do not use short-circuit evaluation!)
|
---|
140 | while (originalEnumerator.MoveNext() & estimatedEnumerator.MoveNext()) {
|
---|
141 | double original = originalEnumerator.Current;
|
---|
142 | double estimated = estimatedEnumerator.Current;
|
---|
143 | Add(original, estimated);
|
---|
144 | if (ErrorState != OnlineCalculatorError.None) break;
|
---|
145 | }
|
---|
146 |
|
---|
147 | // check if both enumerators are at the end to make sure both enumerations have the same length
|
---|
148 | if (ErrorState == OnlineCalculatorError.None && (estimatedEnumerator.MoveNext() || originalEnumerator.MoveNext())) {
|
---|
149 | throw new ArgumentException("Number of elements in originalValues and estimatedValues enumerations doesn't match.");
|
---|
150 | }
|
---|
151 | errorState = ErrorState;
|
---|
152 | }
|
---|
153 | }
|
---|
154 | }
|
---|