Free cookie consent management tool by TermsFeed Policy Generator

source: branches/2922-DataCompletenessChartPerf/HeuristicLab.Problems.DataAnalysis.Symbolic/3.4/Converters/LinearModelToTreeConverter.cs @ 18242

Last change on this file since 18242 was 15583, checked in by swagner, 7 years ago

#2640: Updated year of copyrights in license headers

File size: 5.1 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2018 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using System.Collections.Generic;
24using System.Linq;
25using HeuristicLab.Common;
26using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
27
28namespace HeuristicLab.Problems.DataAnalysis.Symbolic {
29  public static class LinearModelToTreeConverter {
30    public static ISymbolicExpressionTree CreateTree(string[] variableNames, double[] coefficients,
31      double @const = 0) {
32      return CreateTree(variableNames, new int[variableNames.Length], coefficients, @const);
33    }
34
35    public static ISymbolicExpressionTree CreateTree(
36      IEnumerable<KeyValuePair<string, IEnumerable<string>>> factors, double[] factorCoefficients,
37      string[] variableNames, double[] coefficients,
38      double @const = 0) {
39      if (factorCoefficients.Length == 0 && coefficients.Length == 0) throw new ArgumentException();
40      ISymbolicExpressionTree p1 = null;
41      if (coefficients.Length > 0) {
42        p1 = CreateTree(variableNames, new int[variableNames.Length], coefficients, @const);
43        if (factorCoefficients.Length == 0)
44          return p1;
45      }
46      if (factorCoefficients.Length > 0) {
47        var p2 = CreateTree(factors, factorCoefficients);
48        if (p1 == null) return p2;
49
50        // combine
51        ISymbolicExpressionTreeNode add = p1.Root.GetSubtree(0).GetSubtree(0);
52        foreach (var binFactorNode in p2.IterateNodesPrefix().OfType<BinaryFactorVariableTreeNode>())
53          add.AddSubtree(binFactorNode);
54        return p1;
55      }
56      throw new ArgumentException();
57    }
58
59    public static ISymbolicExpressionTree CreateTree(string[] variableNames, int[] lags, double[] coefficients,
60      double @const = 0) {
61      if (variableNames.Length == 0 ||
62        variableNames.Length != coefficients.Length ||
63        variableNames.Length != lags.Length)
64        throw new ArgumentException("The length of the variable names, lags, and coefficients vectors must match");
65
66      ISymbolicExpressionTree tree = new SymbolicExpressionTree(new ProgramRootSymbol().CreateTreeNode());
67      ISymbolicExpressionTreeNode startNode = new StartSymbol().CreateTreeNode();
68      tree.Root.AddSubtree(startNode);
69      ISymbolicExpressionTreeNode addition = new Addition().CreateTreeNode();
70      startNode.AddSubtree(addition);
71
72      for (int i = 0; i < variableNames.Length; i++) {
73        if (lags[i] == 0) {
74          VariableTreeNode vNode = (VariableTreeNode)new Variable().CreateTreeNode();
75          vNode.VariableName = variableNames[i];
76          vNode.Weight = coefficients[i];
77          addition.AddSubtree(vNode);
78        } else {
79          LaggedVariableTreeNode vNode = (LaggedVariableTreeNode)new LaggedVariable().CreateTreeNode();
80          vNode.VariableName = variableNames[i];
81          vNode.Weight = coefficients[i];
82          vNode.Lag = lags[i];
83          addition.AddSubtree(vNode);
84        }
85      }
86
87      if (!@const.IsAlmost(0.0)) {
88        ConstantTreeNode cNode = (ConstantTreeNode)new Constant().CreateTreeNode();
89        cNode.Value = @const;
90        addition.AddSubtree(cNode);
91      }
92      return tree;
93    }
94
95    public static ISymbolicExpressionTree CreateTree(IEnumerable<KeyValuePair<string, IEnumerable<string>>> factors,
96      double[] factorCoefficients,
97      double @const = 0) {
98
99      ISymbolicExpressionTree tree = new SymbolicExpressionTree(new ProgramRootSymbol().CreateTreeNode());
100      ISymbolicExpressionTreeNode startNode = new StartSymbol().CreateTreeNode();
101      tree.Root.AddSubtree(startNode);
102      ISymbolicExpressionTreeNode addition = new Addition().CreateTreeNode();
103      startNode.AddSubtree(addition);
104
105      int i = 0;
106      foreach (var factor in factors) {
107        var varName = factor.Key;
108        foreach (var factorValue in factor.Value) {
109          var node = (BinaryFactorVariableTreeNode)new BinaryFactorVariable().CreateTreeNode();
110          node.VariableValue = factorValue;
111          node.VariableName = varName;
112          node.Weight = factorCoefficients[i];
113          addition.AddSubtree(node);
114          i++;
115        }
116      }
117
118      if (!@const.IsAlmost(0.0)) {
119        ConstantTreeNode cNode = (ConstantTreeNode)new Constant().CreateTreeNode();
120        cNode.Value = @const;
121        addition.AddSubtree(cNode);
122      }
123      return tree;
124    }
125  }
126}
Note: See TracBrowser for help on using the repository browser.