1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2018 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System.Collections.Generic;
|
---|
23 | using HeuristicLab.Data;
|
---|
24 | using HeuristicLab.Encodings.PermutationEncoding;
|
---|
25 |
|
---|
26 | namespace HeuristicLab.Problems.QuadraticAssignment {
|
---|
27 | public static class QAPPermutationProximityCalculator {
|
---|
28 |
|
---|
29 | public static double CalculatePhenotypeSimilarity(Permutation a, Permutation b, DoubleMatrix weights, DoubleMatrix distances) {
|
---|
30 | return 1.0 - CalculatePhenotypeDistance(a, b, weights, distances);
|
---|
31 | }
|
---|
32 |
|
---|
33 | public static double CalculatePhenotypeDistance(Permutation a, Permutation b, DoubleMatrix weights, DoubleMatrix distances) {
|
---|
34 | Dictionary<double, Dictionary<double, int>> alleles = new Dictionary<double, Dictionary<double, int>>();
|
---|
35 | int distance = 0, len = a.Length;
|
---|
36 | for (int x = 0; x < len; x++) {
|
---|
37 | for (int y = 0; y < len; y++) {
|
---|
38 | // there's a limited universe of double values as they're all drawn from the same matrix
|
---|
39 | double dA = distances[a[x], a[y]], dB = distances[b[x], b[y]];
|
---|
40 | if (dA == dB) continue;
|
---|
41 |
|
---|
42 | Dictionary<double, int> dAlleles;
|
---|
43 | if (!alleles.ContainsKey(weights[x, y])) {
|
---|
44 | dAlleles = new Dictionary<double, int>();
|
---|
45 | alleles.Add(weights[x, y], dAlleles);
|
---|
46 | } else dAlleles = alleles[weights[x, y]];
|
---|
47 |
|
---|
48 | int countA = 1, countB = -1;
|
---|
49 |
|
---|
50 | if (dAlleles.ContainsKey(dA)) countA += dAlleles[dA];
|
---|
51 | if (dAlleles.ContainsKey(dB)) countB += dAlleles[dB];
|
---|
52 |
|
---|
53 | if (countA <= 0) distance--; // we've found in A an allele that was present in B
|
---|
54 | else distance++; // we've found in A a new allele
|
---|
55 | dAlleles[dA] = countA;
|
---|
56 |
|
---|
57 | if (countB >= 0) distance--; // we've found in B an allele that was present in A
|
---|
58 | else distance++; // we've found in B a new allele
|
---|
59 | dAlleles[dB] = countB;
|
---|
60 | }
|
---|
61 | }
|
---|
62 | return distance / (double)(2 * len * len);
|
---|
63 | }
|
---|
64 | }
|
---|
65 | }
|
---|