1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2018 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Linq;
|
---|
25 | using HeuristicLab.Common;
|
---|
26 | using HeuristicLab.Core;
|
---|
27 | using HeuristicLab.Encodings.RealVectorEncoding;
|
---|
28 | using HeuristicLab.Optimization;
|
---|
29 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
30 |
|
---|
31 | namespace HeuristicLab.Algorithms.MOCMAEvolutionStrategy {
|
---|
32 | [Item("CrowdingIndicator", "Selection of Offspring based on CrowdingDistance")]
|
---|
33 | [StorableClass]
|
---|
34 | internal class CrowdingIndicator : Item, IIndicator {
|
---|
35 | #region Constructors and Cloning
|
---|
36 | [StorableConstructor]
|
---|
37 | protected CrowdingIndicator(bool deserializing) : base(deserializing) { }
|
---|
38 | protected CrowdingIndicator(CrowdingIndicator original, Cloner cloner) : base(original, cloner) { }
|
---|
39 | public override IDeepCloneable Clone(Cloner cloner) { return new CrowdingIndicator(this, cloner); }
|
---|
40 | public CrowdingIndicator() { }
|
---|
41 | #endregion
|
---|
42 |
|
---|
43 | public int LeastContributer(IReadOnlyList<Individual> front, MultiObjectiveBasicProblem<RealVectorEncoding> problem) {
|
---|
44 | var bounds = problem.Encoding.Bounds;
|
---|
45 | var extracted = front.Select(x => x.PenalizedFitness).ToArray();
|
---|
46 | if (extracted.Length <= 2) return 0;
|
---|
47 | var pointsums = new double[extracted.Length];
|
---|
48 |
|
---|
49 | for (var dim = 0; dim < problem.Maximization.Length; dim++) {
|
---|
50 | var arr = extracted.Select(x => x[dim]).ToArray();
|
---|
51 | Array.Sort(arr);
|
---|
52 | var fmax = problem.Encoding.Bounds[dim % bounds.Rows, 1];
|
---|
53 | var fmin = bounds[dim % bounds.Rows, 0];
|
---|
54 | var pointIdx = 0;
|
---|
55 | foreach (var point in extracted) {
|
---|
56 | var pos = Array.BinarySearch(arr, point[dim]);
|
---|
57 | var d = pos != 0 && pos != arr.Length - 1 ? (arr[pos + 1] - arr[pos - 1]) / (fmax - fmin) : double.PositiveInfinity;
|
---|
58 | pointsums[pointIdx] += d;
|
---|
59 | pointIdx++;
|
---|
60 | }
|
---|
61 | }
|
---|
62 | return pointsums.Select((value, index) => new { value, index }).OrderBy(x => x.value).First().index;
|
---|
63 | }
|
---|
64 | }
|
---|
65 | }
|
---|