1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2018 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System.Collections.Generic;
|
---|
23 | using System.Linq;
|
---|
24 | using HeuristicLab.Common;
|
---|
25 | using HeuristicLab.Core;
|
---|
26 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
27 |
|
---|
28 | namespace HeuristicLab.Problems.DataAnalysis {
|
---|
29 | [Item("Transformed Regression Model", "A model that was transformed back to match the original variables after the training was performed on transformed variables.")]
|
---|
30 | [StorableClass]
|
---|
31 | public class TransformedRegressionModel : RegressionModel, ITransformedRegressionModel {
|
---|
32 |
|
---|
33 | [Storable]
|
---|
34 | public IRegressionModel OriginalModel { get; private set; }
|
---|
35 |
|
---|
36 | [Storable]
|
---|
37 | public ItemList<IDataAnalysisTransformation> Transformations { get; private set; }
|
---|
38 |
|
---|
39 | public override IEnumerable<string> VariablesUsedForPrediction {
|
---|
40 | get { return OriginalModel.VariablesUsedForPrediction; }
|
---|
41 | }
|
---|
42 |
|
---|
43 | #region Constructor, Cloning & Persistence
|
---|
44 | public TransformedRegressionModel(IRegressionModel originalModel, IEnumerable<IDataAnalysisTransformation> transformations)
|
---|
45 | : base(RegressionProblemData.GetOriginalTragetVariable(originalModel.TargetVariable, transformations)) {
|
---|
46 | Name = "Transformed " + originalModel.Name;
|
---|
47 | OriginalModel = originalModel;
|
---|
48 | Transformations = new ItemList<IDataAnalysisTransformation>(transformations);
|
---|
49 | }
|
---|
50 |
|
---|
51 | protected TransformedRegressionModel(TransformedRegressionModel original, Cloner cloner)
|
---|
52 | : base(original, cloner) {
|
---|
53 | OriginalModel = cloner.Clone(original.OriginalModel);
|
---|
54 | Transformations = cloner.Clone(original.Transformations);
|
---|
55 | }
|
---|
56 |
|
---|
57 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
58 | return new TransformedRegressionModel(this, cloner);
|
---|
59 | }
|
---|
60 |
|
---|
61 | [StorableConstructor]
|
---|
62 | protected TransformedRegressionModel(bool deserializing)
|
---|
63 | : base(deserializing) { }
|
---|
64 | #endregion
|
---|
65 |
|
---|
66 | // dataset in original data range
|
---|
67 | public override IEnumerable<double> GetEstimatedValues(IDataset dataset, IEnumerable<int> rows) {
|
---|
68 | var transformedDataset = TransformInputs(dataset, Transformations);
|
---|
69 |
|
---|
70 | var estimates = OriginalModel.GetEstimatedValues(transformedDataset, rows);
|
---|
71 |
|
---|
72 | return InverseTransformEstimates(estimates, Transformations, OriginalModel.TargetVariable);
|
---|
73 | }
|
---|
74 |
|
---|
75 | // problemData in original data range
|
---|
76 | public override IRegressionSolution CreateRegressionSolution(IRegressionProblemData problemData) {
|
---|
77 | return new TransformedRegressionSolution(this, new RegressionProblemData(problemData));
|
---|
78 | }
|
---|
79 |
|
---|
80 | private static IDataset TransformInputs(IDataset dataset, IEnumerable<IDataAnalysisTransformation> transformations) {
|
---|
81 | return DataAnalysisProblemData.Transform(dataset, transformations);
|
---|
82 | }
|
---|
83 |
|
---|
84 | private static IEnumerable<double> InverseTransformEstimates(IEnumerable<double> data, IEnumerable<IDataAnalysisTransformation> transformations, string targetVariable) {
|
---|
85 | var estimates = data.ToList();
|
---|
86 |
|
---|
87 | foreach (var transformation in transformations.Reverse()) {
|
---|
88 | if (transformation.TransformedVariable == targetVariable) {
|
---|
89 | var trans = (ITransformation<double>)transformation.Transformation;
|
---|
90 |
|
---|
91 | estimates = trans.InverseApply(estimates).ToList();
|
---|
92 |
|
---|
93 | // setup next iteration
|
---|
94 | targetVariable = transformation.OriginalVariable;
|
---|
95 | }
|
---|
96 | }
|
---|
97 |
|
---|
98 | return estimates;
|
---|
99 | }
|
---|
100 | }
|
---|
101 | } |
---|