1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2018 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Linq;
|
---|
25 | using HeuristicLab.Common;
|
---|
26 | using HeuristicLab.Core;
|
---|
27 | using HeuristicLab.Data;
|
---|
28 | using HeuristicLab.Parameters;
|
---|
29 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
30 |
|
---|
31 | namespace HeuristicLab.Problems.DataAnalysis {
|
---|
32 | [Item("Transformation", "A transformation applied to a DataAnalysisProblemData")]
|
---|
33 | [StorableClass]
|
---|
34 | public sealed class DataAnalysisTransformation : ParameterizedNamedItem, IDataAnalysisTransformation {
|
---|
35 | #region Parameter Properties
|
---|
36 | private IFixedValueParameter<StringValue> OriginalVariableParameter {
|
---|
37 | get { return (IFixedValueParameter<StringValue>)Parameters["Original Variable"]; }
|
---|
38 | }
|
---|
39 |
|
---|
40 | private IFixedValueParameter<StringValue> TransformedVariableParameter {
|
---|
41 | get { return (IFixedValueParameter<StringValue>)Parameters["Transformed Variable"]; }
|
---|
42 | }
|
---|
43 |
|
---|
44 | private ValueParameter<ITransformation> TransformationParameter {
|
---|
45 | get { return (ValueParameter<ITransformation>)Parameters["Transformation"]; }
|
---|
46 | }
|
---|
47 | #endregion
|
---|
48 |
|
---|
49 | #region Properties
|
---|
50 | public string OriginalVariable {
|
---|
51 | get { return OriginalVariableParameter.Value.Value; }
|
---|
52 | }
|
---|
53 |
|
---|
54 | public string TransformedVariable {
|
---|
55 | get { return TransformedVariableParameter.Value.Value; }
|
---|
56 | }
|
---|
57 |
|
---|
58 | public ITransformation Transformation {
|
---|
59 | get { return TransformationParameter.Value; }
|
---|
60 | }
|
---|
61 | #endregion
|
---|
62 |
|
---|
63 | #region Constructor, Cloning & Persistence
|
---|
64 | public DataAnalysisTransformation(string originalVariable, string transformedVariable, ITransformation transformation)
|
---|
65 | : base() {
|
---|
66 | Parameters.Add(new FixedValueParameter<StringValue>("Original Variable", new StringValue(originalVariable).AsReadOnly()));
|
---|
67 | Parameters.Add(new FixedValueParameter<StringValue>("Transformed Variable", new StringValue(transformedVariable).AsReadOnly()));
|
---|
68 | Parameters.Add(new ValueParameter<ITransformation>("Transformation", transformation)); // TODO: should be readonly/fixed; alternatively lock in view
|
---|
69 | }
|
---|
70 |
|
---|
71 | private DataAnalysisTransformation(DataAnalysisTransformation original, Cloner cloner)
|
---|
72 | : base(original, cloner) { }
|
---|
73 |
|
---|
74 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
75 | return new DataAnalysisTransformation(this, cloner);
|
---|
76 | }
|
---|
77 |
|
---|
78 | [StorableConstructor]
|
---|
79 | private DataAnalysisTransformation(bool deserializing)
|
---|
80 | : base(deserializing) { }
|
---|
81 |
|
---|
82 | [StorableHook(HookType.AfterDeserialization)]
|
---|
83 | #endregion
|
---|
84 |
|
---|
85 | public override string ToString() {
|
---|
86 | return $"{Transformation} ({OriginalVariable} -> {TransformedVariable})";
|
---|
87 | }
|
---|
88 |
|
---|
89 | #region Transformation
|
---|
90 |
|
---|
91 | #region Variable Extension & Reduction
|
---|
92 | // originals => include extended
|
---|
93 | public static IEnumerable<string> ExtendVariables(IEnumerable<string> variables, IEnumerable<IDataAnalysisTransformation> transformations) {
|
---|
94 | return GetTransitiveVariables(variables, transformations, inverse: false);
|
---|
95 | }
|
---|
96 |
|
---|
97 | // extended => originals
|
---|
98 | public static IEnumerable<string> ReduceVariables(IEnumerable<string> variables, IEnumerable<IDataAnalysisTransformation> transformations) {
|
---|
99 | var originalVariables = new HashSet<string>();
|
---|
100 | foreach (var variable in variables) {
|
---|
101 | var originalVariable = GetStrictTransitiveVariables(variable, transformations, inverse: true).Last();
|
---|
102 | originalVariables.Add(originalVariable);
|
---|
103 | }
|
---|
104 |
|
---|
105 | return originalVariables;
|
---|
106 | }
|
---|
107 |
|
---|
108 | // return all reachable variables
|
---|
109 | public static IEnumerable<string> GetTransitiveVariables(IEnumerable<string> variables, IEnumerable<IDataAnalysisTransformation> transformations, bool inverse = false) {
|
---|
110 | var reachableVariables = new HashSet<string>(variables);
|
---|
111 | if (inverse) transformations = transformations.Reverse();
|
---|
112 | foreach (var transformation in transformations) {
|
---|
113 | var source = inverse ? transformation.TransformedVariable : transformation.OriginalVariable;
|
---|
114 | var target = inverse ? transformation.OriginalVariable : transformation.TransformedVariable;
|
---|
115 | if (reachableVariables.Contains(source))
|
---|
116 | reachableVariables.Add(target);
|
---|
117 | }
|
---|
118 |
|
---|
119 | return reachableVariables;
|
---|
120 | }
|
---|
121 |
|
---|
122 | // return the (unique) chain of transformations for a given variable
|
---|
123 | public static IEnumerable<string> GetStrictTransitiveVariables(string variable, IEnumerable<IDataAnalysisTransformation> transformations, bool inverse = false) {
|
---|
124 | yield return variable;
|
---|
125 | if (inverse) transformations = transformations.Reverse();
|
---|
126 | foreach (var transformation in transformations) {
|
---|
127 | var source = inverse ? transformation.TransformedVariable : transformation.OriginalVariable;
|
---|
128 | var target = inverse ? transformation.OriginalVariable : transformation.TransformedVariable;
|
---|
129 | if (variable == source) {
|
---|
130 | variable = target;
|
---|
131 | yield return variable;
|
---|
132 | }
|
---|
133 | }
|
---|
134 | }
|
---|
135 | #endregion
|
---|
136 |
|
---|
137 | #region Transform Dataset
|
---|
138 | public static IDataset Transform(IDataset dataset, IEnumerable<IDataAnalysisTransformation> transformations) {
|
---|
139 | var modifiableDataset = ((Dataset)dataset).ToModifiable();
|
---|
140 |
|
---|
141 | foreach (var transformation in transformations) {
|
---|
142 | var trans = (ITransformation<double>)transformation.Transformation;
|
---|
143 |
|
---|
144 | var originalData = modifiableDataset.GetDoubleValues(transformation.OriginalVariable);
|
---|
145 | var transformedData = trans.Apply(originalData).ToList();
|
---|
146 | if (modifiableDataset.VariableNames.Contains(transformation.TransformedVariable))
|
---|
147 | modifiableDataset.ReplaceVariable(transformation.TransformedVariable, transformedData);
|
---|
148 | else
|
---|
149 | modifiableDataset.AddVariable(transformation.TransformedVariable, transformedData);
|
---|
150 | }
|
---|
151 |
|
---|
152 | return new Dataset(modifiableDataset);
|
---|
153 | }
|
---|
154 |
|
---|
155 | public static IDataset InverseTransform(IDataset dataset, IEnumerable<IDataAnalysisTransformation> transformations, bool removeVirtualVariables = true) {
|
---|
156 | var modifiableDataset = ((Dataset)dataset).ToModifiable();
|
---|
157 |
|
---|
158 | var transformationsStack = new Stack<IDataAnalysisTransformation>(transformations);
|
---|
159 | while (transformationsStack.Any()) {
|
---|
160 | var transformation = transformationsStack.Pop();
|
---|
161 | var trans = (ITransformation<double>)transformation.Transformation;
|
---|
162 |
|
---|
163 | var prevTransformations = transformations.Except(transformationsStack);
|
---|
164 | bool originalWasChanged = prevTransformations.Any(x => x.TransformedVariable == transformation.OriginalVariable);
|
---|
165 | if (originalWasChanged) {
|
---|
166 | var transformedData = modifiableDataset.GetDoubleValues(transformation.TransformedVariable);
|
---|
167 |
|
---|
168 | var originalData = trans.InverseApply(transformedData).ToList();
|
---|
169 | modifiableDataset.ReplaceVariable(transformation.OriginalVariable, originalData);
|
---|
170 | }
|
---|
171 | }
|
---|
172 |
|
---|
173 | if (removeVirtualVariables) {
|
---|
174 | var originalVariables = ReduceVariables(dataset.VariableNames, transformations);
|
---|
175 | var virtualVariables = dataset.VariableNames.Except(originalVariables);
|
---|
176 | foreach (var virtualVariable in virtualVariables)
|
---|
177 | modifiableDataset.RemoveVariable(virtualVariable);
|
---|
178 | }
|
---|
179 |
|
---|
180 | return new Dataset(modifiableDataset);
|
---|
181 | }
|
---|
182 | #endregion
|
---|
183 |
|
---|
184 | #region Transform ProblemData
|
---|
185 | public static IDataAnalysisProblemData ApplyTransformations(IDataAnalysisProblemData problemData) {
|
---|
186 | var newDataset = Transform(problemData.Dataset, problemData.Transformations);
|
---|
187 | var extendedInputs = ExtendVariables(problemData.AllowedInputVariables, problemData.Transformations);
|
---|
188 |
|
---|
189 | return CreateNewProblemData(problemData, newDataset, extendedInputs, inverse: false);
|
---|
190 | }
|
---|
191 |
|
---|
192 | public static IDataAnalysisProblemData InverseApplyTransformations(IDataAnalysisProblemData problemData) {
|
---|
193 | var newDataset = InverseTransform(problemData.Dataset, problemData.Transformations);
|
---|
194 | var reducedInputs = ReduceVariables(problemData.AllowedInputVariables, problemData.Transformations);
|
---|
195 |
|
---|
196 | return CreateNewProblemData(problemData, newDataset, reducedInputs, inverse: true);
|
---|
197 | }
|
---|
198 |
|
---|
199 | private static IDataAnalysisProblemData CreateNewProblemData(IDataAnalysisProblemData problemData, IDataset dataset, IEnumerable<string> inputs, bool inverse = false) {
|
---|
200 | IDataAnalysisProblemData newProblemData;
|
---|
201 | if (problemData is IRegressionProblemData regressionProblemData) {
|
---|
202 | var newTargetVariable = GetStrictTransitiveVariables(regressionProblemData.TargetVariable, problemData.Transformations, inverse).Last();
|
---|
203 | if (problemData is ITimeSeriesPrognosisProblemData timeSeriesPrognosisProblemData) {
|
---|
204 | newProblemData = new TimeSeriesPrognosisProblemData(dataset, inputs, newTargetVariable, problemData.Transformations) {
|
---|
205 | TrainingHorizon = timeSeriesPrognosisProblemData.TrainingHorizon,
|
---|
206 | TestHorizon = timeSeriesPrognosisProblemData.TestHorizon,
|
---|
207 | };
|
---|
208 |
|
---|
209 | } else
|
---|
210 | newProblemData = new RegressionProblemData(dataset, inputs, newTargetVariable, problemData.Transformations);
|
---|
211 | } else if (problemData is IClassificationProblemData classificationProblemData) {
|
---|
212 | newProblemData = new ClassificationProblemData(dataset, inputs, classificationProblemData.TargetVariable, problemData.Transformations);
|
---|
213 | } else if (problemData is IClusteringProblemData) {
|
---|
214 | newProblemData = new ClusteringProblemData(dataset, inputs, problemData.Transformations);
|
---|
215 | } else throw new NotSupportedException("Type of ProblemData not supported");
|
---|
216 |
|
---|
217 | newProblemData.TrainingPartition.Start = problemData.TrainingPartition.Start;
|
---|
218 | newProblemData.TrainingPartition.End = problemData.TrainingPartition.End;
|
---|
219 | newProblemData.TestPartition.Start = problemData.TestPartition.Start;
|
---|
220 | newProblemData.TestPartition.End = problemData.TestPartition.End;
|
---|
221 |
|
---|
222 | return newProblemData;
|
---|
223 | }
|
---|
224 | #endregion
|
---|
225 |
|
---|
226 | #region Transform Model
|
---|
227 | // problemdata required for type-switch. cannot differ based on model type (e.g. RF model is both regression and classification)
|
---|
228 | public static IDataAnalysisTransformationModel CreateTransformationIntegratedModel(IDataAnalysisModel model, IEnumerable<IDataAnalysisTransformation> transformations, IDataAnalysisProblemData problemData) {
|
---|
229 | if (model is IDataAnalysisTransformationModel)
|
---|
230 | throw new InvalidOperationException("Model already is a transformation model.");
|
---|
231 |
|
---|
232 | if (problemData is ITimeSeriesPrognosisProblemData)
|
---|
233 | return new TimeSeriesPrognosisTransformationModel((ITimeSeriesPrognosisModel)model, transformations);
|
---|
234 | if (problemData is IRegressionProblemData)
|
---|
235 | return new RegressionTransformationModel((IRegressionModel)model, transformations);
|
---|
236 | if (problemData is IClassificationProblemData)
|
---|
237 | return new ClassificationTransformationModel((IClassificationModel)model, transformations);
|
---|
238 | if (problemData is IClusteringProblemData)
|
---|
239 | return new ClusteringTransformationModel((IClusteringModel)model, transformations);
|
---|
240 |
|
---|
241 | throw new NotSupportedException("Type of the model is not supported;");
|
---|
242 | }
|
---|
243 |
|
---|
244 | public static IDataAnalysisModel RestoreTrainedModel(IDataAnalysisModel transformationModel, IEnumerable<IDataAnalysisTransformation> transformations) {
|
---|
245 | if (!(transformationModel is IDataAnalysisTransformationModel model))
|
---|
246 | throw new InvalidOperationException("Cannot restore because model is not a TransformationModel");
|
---|
247 | return model.OriginalModel;
|
---|
248 | }
|
---|
249 | #endregion
|
---|
250 |
|
---|
251 | #region Transform Solution
|
---|
252 | public static IDataAnalysisSolution TransformSolution(IDataAnalysisSolution solution) {
|
---|
253 | var transformations = solution.ProblemData.Transformations;
|
---|
254 |
|
---|
255 | var model = solution.Model is IDataAnalysisTransformationModel // TODO: what if model is a integrated sym-reg model?
|
---|
256 | ? RestoreTrainedModel(solution.Model, transformations)
|
---|
257 | : CreateTransformationIntegratedModel(solution.Model, transformations, solution.ProblemData);
|
---|
258 |
|
---|
259 | var data = solution.Model is IDataAnalysisTransformationModel
|
---|
260 | ? ApplyTransformations(solution.ProblemData) // original -> transformed
|
---|
261 | : InverseApplyTransformations(solution.ProblemData); // transformed -> original
|
---|
262 |
|
---|
263 | return CreateSolution(model, data);
|
---|
264 | }
|
---|
265 |
|
---|
266 | private static IDataAnalysisSolution CreateSolution(IDataAnalysisModel model, IDataAnalysisProblemData problemData) {
|
---|
267 | if (problemData is ITimeSeriesPrognosisProblemData)
|
---|
268 | return ((ITimeSeriesPrognosisModel)model).CreateTimeSeriesPrognosisSolution((ITimeSeriesPrognosisProblemData)problemData);
|
---|
269 | if (problemData is IRegressionProblemData)
|
---|
270 | return ((IRegressionModel)model).CreateRegressionSolution((IRegressionProblemData)problemData);
|
---|
271 | if (problemData is IClassificationProblemData)
|
---|
272 | return ((IClassificationModel)model).CreateClassificationSolution((IClassificationProblemData)problemData);
|
---|
273 | //if (problemData is IClusteringProblemData)
|
---|
274 | // return ((IClusteringModel)model).CreateClusteringSolution((IClusteringProblemData)problemData);
|
---|
275 |
|
---|
276 | throw new NotSupportedException("Cannot create Solution of the model type.");
|
---|
277 | }
|
---|
278 | #endregion
|
---|
279 |
|
---|
280 | #endregion
|
---|
281 | }
|
---|
282 | } |
---|