1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2018 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Linq;
|
---|
25 | using HeuristicLab.Common;
|
---|
26 | using HeuristicLab.Core;
|
---|
27 | using HeuristicLab.Data;
|
---|
28 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
29 | using HeuristicLab.Optimization;
|
---|
30 | using HeuristicLab.Parameters;
|
---|
31 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
32 |
|
---|
33 | namespace HeuristicLab.Problems.DataAnalysis.Symbolic {
|
---|
34 | /// <summary>
|
---|
35 | /// An operator that collects the Pareto-best symbolic data analysis solutions for single objective symbolic data analysis problems.
|
---|
36 | /// </summary>
|
---|
37 | [Item("SymbolicDataAnalysisSingleObjectiveTrainingParetoBestSolutionAnalyzer", "An operator that analyzes the Pareto-best symbolic data analysis solution for single objective symbolic data analysis problems.")]
|
---|
38 | [StorableClass]
|
---|
39 | public abstract class SymbolicDataAnalysisSingleObjectiveTrainingParetoBestSolutionAnalyzer<S, T> : SymbolicDataAnalysisSingleObjectiveAnalyzer, ISymbolicDataAnalysisInterpreterOperator, ISymbolicDataAnalysisBoundedOperator
|
---|
40 | where T : class, ISymbolicDataAnalysisSolution
|
---|
41 | where S : class, IDataAnalysisProblemData {
|
---|
42 | private const string ProblemDataParameterName = "ProblemData";
|
---|
43 | private const string TrainingBestSolutionsParameterName = "Best training solutions";
|
---|
44 | private const string TrainingBestSolutionQualitiesParameterName = "Best training solution qualities";
|
---|
45 | private const string ComplexityParameterName = "Complexity";
|
---|
46 | private const string SymbolicDataAnalysisTreeInterpreterParameterName = "SymbolicDataAnalysisTreeInterpreter";
|
---|
47 | private const string EstimationLimitsParameterName = "EstimationLimits";
|
---|
48 |
|
---|
49 | public override bool EnabledByDefault {
|
---|
50 | get { return false; }
|
---|
51 | }
|
---|
52 |
|
---|
53 | #region parameter properties
|
---|
54 | public ILookupParameter<ItemList<T>> TrainingBestSolutionsParameter {
|
---|
55 | get { return (ILookupParameter<ItemList<T>>)Parameters[TrainingBestSolutionsParameterName]; }
|
---|
56 | }
|
---|
57 | public ILookupParameter<ItemList<DoubleArray>> TrainingBestSolutionQualitiesParameter {
|
---|
58 | get { return (ILookupParameter<ItemList<DoubleArray>>)Parameters[TrainingBestSolutionQualitiesParameterName]; }
|
---|
59 | }
|
---|
60 | public IScopeTreeLookupParameter<DoubleValue> ComplexityParameter {
|
---|
61 | get { return (IScopeTreeLookupParameter<DoubleValue>)Parameters[ComplexityParameterName]; }
|
---|
62 | }
|
---|
63 | public ILookupParameter<ISymbolicDataAnalysisExpressionTreeInterpreter> SymbolicDataAnalysisTreeInterpreterParameter {
|
---|
64 | get { return (ILookupParameter<ISymbolicDataAnalysisExpressionTreeInterpreter>)Parameters[SymbolicDataAnalysisTreeInterpreterParameterName]; }
|
---|
65 | }
|
---|
66 | public ILookupParameter<S> ProblemDataParameter {
|
---|
67 | get { return (ILookupParameter<S>)Parameters[ProblemDataParameterName]; }
|
---|
68 | }
|
---|
69 | public IValueLookupParameter<DoubleLimit> EstimationLimitsParameter {
|
---|
70 | get { return (IValueLookupParameter<DoubleLimit>)Parameters[EstimationLimitsParameterName]; }
|
---|
71 | }
|
---|
72 | #endregion
|
---|
73 | #region properties
|
---|
74 | public ItemList<T> TrainingBestSolutions {
|
---|
75 | get { return TrainingBestSolutionsParameter.ActualValue; }
|
---|
76 | set { TrainingBestSolutionsParameter.ActualValue = value; }
|
---|
77 | }
|
---|
78 | public ItemList<DoubleArray> TrainingBestSolutionQualities {
|
---|
79 | get { return TrainingBestSolutionQualitiesParameter.ActualValue; }
|
---|
80 | set { TrainingBestSolutionQualitiesParameter.ActualValue = value; }
|
---|
81 | }
|
---|
82 | #endregion
|
---|
83 |
|
---|
84 | [StorableConstructor]
|
---|
85 | protected SymbolicDataAnalysisSingleObjectiveTrainingParetoBestSolutionAnalyzer(bool deserializing) : base(deserializing) { }
|
---|
86 | protected SymbolicDataAnalysisSingleObjectiveTrainingParetoBestSolutionAnalyzer(SymbolicDataAnalysisSingleObjectiveTrainingParetoBestSolutionAnalyzer<S, T> original, Cloner cloner) : base(original, cloner) { }
|
---|
87 | public SymbolicDataAnalysisSingleObjectiveTrainingParetoBestSolutionAnalyzer()
|
---|
88 | : base() {
|
---|
89 | Parameters.Add(new LookupParameter<S>(ProblemDataParameterName, "The problem data for the symbolic data analysis solution."));
|
---|
90 | Parameters.Add(new LookupParameter<ItemList<T>>(TrainingBestSolutionsParameterName, "The training best (Pareto-optimal) symbolic data analysis solutions."));
|
---|
91 | Parameters.Add(new LookupParameter<ItemList<DoubleArray>>(TrainingBestSolutionQualitiesParameterName, "The qualities of the training best (Pareto-optimal) solutions."));
|
---|
92 | Parameters.Add(new ScopeTreeLookupParameter<DoubleValue>(ComplexityParameterName, "The complexity of each tree."));
|
---|
93 | Parameters.Add(new LookupParameter<ISymbolicDataAnalysisExpressionTreeInterpreter>(SymbolicDataAnalysisTreeInterpreterParameterName, "The symbolic data analysis tree interpreter for the symbolic expression tree."));
|
---|
94 | Parameters.Add(new ValueLookupParameter<DoubleLimit>(EstimationLimitsParameterName, "The lower and upper limit for the estimated values produced by the symbolic classification model."));
|
---|
95 | }
|
---|
96 |
|
---|
97 | public override IOperation Apply() {
|
---|
98 | var results = ResultCollection;
|
---|
99 | // create empty parameter and result values
|
---|
100 | if (TrainingBestSolutions == null) {
|
---|
101 | TrainingBestSolutions = new ItemList<T>();
|
---|
102 | TrainingBestSolutionQualities = new ItemList<DoubleArray>();
|
---|
103 | results.Add(new Result(TrainingBestSolutionQualitiesParameter.Name, TrainingBestSolutionQualitiesParameter.Description, TrainingBestSolutionQualities));
|
---|
104 | results.Add(new Result(TrainingBestSolutionsParameter.Name, TrainingBestSolutionsParameter.Description, TrainingBestSolutions));
|
---|
105 | }
|
---|
106 |
|
---|
107 | IList<Tuple<double, double>> trainingBestQualities = TrainingBestSolutionQualities
|
---|
108 | .Select(x => Tuple.Create(x[0], x[1]))
|
---|
109 | .ToList();
|
---|
110 |
|
---|
111 | #region find best trees
|
---|
112 | IList<int> nonDominatedIndexes = new List<int>();
|
---|
113 | ISymbolicExpressionTree[] tree = SymbolicExpressionTree.ToArray();
|
---|
114 | List<double> qualities = Quality.Select(x => x.Value).ToList();
|
---|
115 |
|
---|
116 | List<double> complexities;
|
---|
117 | if (ComplexityParameter.ActualValue != null && ComplexityParameter.ActualValue.Length == qualities.Count) {
|
---|
118 | complexities = ComplexityParameter.ActualValue.Select(x => x.Value).ToList();
|
---|
119 | } else {
|
---|
120 | complexities = tree.Select(t => (double)t.Length).ToList();
|
---|
121 | }
|
---|
122 | List<Tuple<double, double>> fitness = new List<Tuple<double, double>>();
|
---|
123 | for (int i = 0; i < qualities.Count; i++)
|
---|
124 | fitness.Add(Tuple.Create(qualities[i], complexities[i]));
|
---|
125 | var maximization = Tuple.Create(Maximization.Value, false);// complexity must be minimized
|
---|
126 | List<Tuple<double, double>> newNonDominatedQualities = new List<Tuple<double, double>>();
|
---|
127 | for (int i = 0; i < tree.Length; i++) {
|
---|
128 | if (IsNonDominated(fitness[i], trainingBestQualities, maximization) &&
|
---|
129 | IsNonDominated(fitness[i], newNonDominatedQualities, maximization) &&
|
---|
130 | IsNonDominated(fitness[i], fitness.Skip(i + 1), maximization)) {
|
---|
131 | if (!newNonDominatedQualities.Contains(fitness[i])) {
|
---|
132 | newNonDominatedQualities.Add(fitness[i]);
|
---|
133 | nonDominatedIndexes.Add(i);
|
---|
134 | }
|
---|
135 | }
|
---|
136 | }
|
---|
137 | #endregion
|
---|
138 |
|
---|
139 | #region update Pareto-optimal solution archive
|
---|
140 | if (nonDominatedIndexes.Count > 0) {
|
---|
141 | ItemList<DoubleArray> nonDominatedQualities = new ItemList<DoubleArray>();
|
---|
142 | ItemList<T> nonDominatedSolutions = new ItemList<T>();
|
---|
143 | // add all new non-dominated solutions to the archive
|
---|
144 | foreach (var index in nonDominatedIndexes) {
|
---|
145 | T solution = CreateSolution(tree[index]);
|
---|
146 | nonDominatedSolutions.Add(solution);
|
---|
147 | nonDominatedQualities.Add(new DoubleArray(new double[] { fitness[index].Item1, fitness[index].Item2 }));
|
---|
148 | }
|
---|
149 | // add old non-dominated solutions only if they are not dominated by one of the new solutions
|
---|
150 | for (int i = 0; i < trainingBestQualities.Count; i++) {
|
---|
151 | if (IsNonDominated(trainingBestQualities[i], newNonDominatedQualities, maximization)) {
|
---|
152 | if (!newNonDominatedQualities.Contains(trainingBestQualities[i])) {
|
---|
153 | nonDominatedSolutions.Add(TrainingBestSolutions[i]);
|
---|
154 | nonDominatedQualities.Add(TrainingBestSolutionQualities[i]);
|
---|
155 | }
|
---|
156 | }
|
---|
157 | }
|
---|
158 |
|
---|
159 | // make sure solutions and qualities are ordered in the results
|
---|
160 | var orderedIndexes =
|
---|
161 | nonDominatedSolutions.Select((s, i) => i).OrderBy(i => nonDominatedQualities[i][0]).ToArray();
|
---|
162 |
|
---|
163 | var orderedNonDominatedSolutions = new ItemList<T>();
|
---|
164 | var orderedNonDominatedQualities = new ItemList<DoubleArray>();
|
---|
165 | foreach (var i in orderedIndexes) {
|
---|
166 | orderedNonDominatedQualities.Add(nonDominatedQualities[i]);
|
---|
167 | orderedNonDominatedSolutions.Add(nonDominatedSolutions[i]);
|
---|
168 | }
|
---|
169 |
|
---|
170 | TrainingBestSolutions = orderedNonDominatedSolutions;
|
---|
171 | TrainingBestSolutionQualities = orderedNonDominatedQualities;
|
---|
172 |
|
---|
173 | results[TrainingBestSolutionsParameter.Name].Value = orderedNonDominatedSolutions;
|
---|
174 | results[TrainingBestSolutionQualitiesParameter.Name].Value = orderedNonDominatedQualities;
|
---|
175 | }
|
---|
176 | #endregion
|
---|
177 | return base.Apply();
|
---|
178 | }
|
---|
179 |
|
---|
180 | protected abstract T CreateSolution(ISymbolicExpressionTree bestTree);
|
---|
181 |
|
---|
182 | private bool IsNonDominated(Tuple<double, double> point, IEnumerable<Tuple<double, double>> points, Tuple<bool, bool> maximization) {
|
---|
183 | return !points.Any(p => IsBetterOrEqual(p.Item1, point.Item1, maximization.Item1) &&
|
---|
184 | IsBetterOrEqual(p.Item2, point.Item2, maximization.Item2));
|
---|
185 | }
|
---|
186 | private bool IsBetterOrEqual(double lhs, double rhs, bool maximization) {
|
---|
187 | if (maximization) return lhs >= rhs;
|
---|
188 | else return lhs <= rhs;
|
---|
189 | }
|
---|
190 | }
|
---|
191 | }
|
---|