1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2018 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Linq;
|
---|
25 | using HeuristicLab.Problems.DataAnalysis;
|
---|
26 |
|
---|
27 | namespace HeuristicLab.DataPreprocessing {
|
---|
28 | public class ProblemDataCreator {
|
---|
29 | private readonly PreprocessingContext context;
|
---|
30 |
|
---|
31 | private Dataset ExportedDataset {
|
---|
32 | get { return context.Data.ExportToDataset(); }
|
---|
33 | }
|
---|
34 |
|
---|
35 | private IList<PreprocessingTransformation> Transformations {
|
---|
36 | get { return context.Data.Transformations; }
|
---|
37 | }
|
---|
38 |
|
---|
39 | public ProblemDataCreator(PreprocessingContext context) {
|
---|
40 | this.context = context;
|
---|
41 | }
|
---|
42 |
|
---|
43 | public IDataAnalysisProblemData CreateProblemData(IDataAnalysisProblemData oldProblemData) {
|
---|
44 | if (context.Data.Rows == 0 || context.Data.Columns == 0) return null;
|
---|
45 |
|
---|
46 | IDataAnalysisProblemData problemData;
|
---|
47 | if (oldProblemData is TimeSeriesPrognosisProblemData) {
|
---|
48 | problemData = CreateTimeSeriesPrognosisData((TimeSeriesPrognosisProblemData)oldProblemData);
|
---|
49 | } else if (oldProblemData is RegressionProblemData) {
|
---|
50 | problemData = CreateRegressionData((RegressionProblemData)oldProblemData);
|
---|
51 | } else if (oldProblemData is ClassificationProblemData) {
|
---|
52 | problemData = CreateClassificationData((ClassificationProblemData)oldProblemData);
|
---|
53 | } else if (oldProblemData is ClusteringProblemData) {
|
---|
54 | problemData = CreateClusteringData((ClusteringProblemData)oldProblemData);
|
---|
55 | } else {
|
---|
56 | throw new NotImplementedException("The type of the DataAnalysisProblemData is not supported.");
|
---|
57 | }
|
---|
58 |
|
---|
59 | SetTrainingAndTestPartition(problemData, context.Data);
|
---|
60 | SetAllowedInputVariables(problemData, oldProblemData);
|
---|
61 |
|
---|
62 | return problemData;
|
---|
63 | }
|
---|
64 |
|
---|
65 | private IDataAnalysisProblemData CreateTimeSeriesPrognosisData(TimeSeriesPrognosisProblemData oldProblemData) {
|
---|
66 | var targetVariable = oldProblemData.TargetVariable;
|
---|
67 | if (!context.Data.VariableNames.Contains(targetVariable))
|
---|
68 | targetVariable = context.Data.VariableNames.First();
|
---|
69 | var newProblemData = new TimeSeriesPrognosisProblemData(ExportedDataset, Enumerable.Empty<string>(), targetVariable, CreateDataAnalysisTransformation()) {
|
---|
70 | TrainingHorizon = oldProblemData.TrainingHorizon,
|
---|
71 | TestHorizon = oldProblemData.TestHorizon
|
---|
72 | };
|
---|
73 | return newProblemData;
|
---|
74 | }
|
---|
75 |
|
---|
76 | private IDataAnalysisProblemData CreateRegressionData(RegressionProblemData oldProblemData) {
|
---|
77 | var targetVariable = DataAnalysisTransformation.GetStrictTransitiveVariables(oldProblemData.TargetVariable, CreateDataAnalysisTransformation(), false).Last();
|
---|
78 | if (!context.Data.VariableNames.Contains(targetVariable))
|
---|
79 | targetVariable = context.Data.VariableNames.First();
|
---|
80 | var newProblemData = new RegressionProblemData(ExportedDataset, Enumerable.Empty<string>(), targetVariable, CreateDataAnalysisTransformation());
|
---|
81 | return newProblemData;
|
---|
82 | }
|
---|
83 |
|
---|
84 | private IDataAnalysisProblemData CreateClassificationData(ClassificationProblemData oldProblemData) {
|
---|
85 | var targetVariable = oldProblemData.TargetVariable;
|
---|
86 | if (!context.Data.VariableNames.Contains(targetVariable))
|
---|
87 | targetVariable = context.Data.VariableNames.First();
|
---|
88 | var newProblemData = new ClassificationProblemData(ExportedDataset, Enumerable.Empty<string>(), targetVariable, CreateDataAnalysisTransformation()) {
|
---|
89 | PositiveClass = oldProblemData.PositiveClass
|
---|
90 | };
|
---|
91 | return newProblemData;
|
---|
92 | }
|
---|
93 |
|
---|
94 | private IDataAnalysisProblemData CreateClusteringData(ClusteringProblemData oldProblemData) {
|
---|
95 | return new ClusteringProblemData(ExportedDataset, Enumerable.Empty<string>(), CreateDataAnalysisTransformation());
|
---|
96 | }
|
---|
97 |
|
---|
98 | private static void SetTrainingAndTestPartition(IDataAnalysisProblemData problemData, IPreprocessingData ppData) {
|
---|
99 | problemData.TrainingPartition.Start = ppData.TrainingPartition.Start;
|
---|
100 | problemData.TrainingPartition.End = ppData.TrainingPartition.End;
|
---|
101 | problemData.TestPartition.Start = ppData.TestPartition.Start;
|
---|
102 | problemData.TestPartition.End = ppData.TestPartition.End;
|
---|
103 | }
|
---|
104 |
|
---|
105 | private static void SetAllowedInputVariables(IDataAnalysisProblemData problemData, IDataAnalysisProblemData oldProblemData) {
|
---|
106 | // original inputs + extended(transitive) inputs
|
---|
107 | var inputs = DataAnalysisTransformation.ExtendVariables(oldProblemData.AllowedInputVariables, problemData.Transformations).ToList();
|
---|
108 | foreach (var input in problemData.InputVariables) {
|
---|
109 | problemData.InputVariables.SetItemCheckedState(input, inputs.Contains(input.Value));
|
---|
110 | }
|
---|
111 |
|
---|
112 | // new variables that were not created via transformations
|
---|
113 | var originalAndVirtualVariables = DataAnalysisTransformation.ExtendVariables(oldProblemData.Dataset.VariableNames, problemData.Transformations);
|
---|
114 | var newVariables = problemData.Dataset.VariableNames.Except(originalAndVirtualVariables).ToList();
|
---|
115 | foreach (var input in problemData.InputVariables) {
|
---|
116 | if (newVariables.Contains(input.Value))
|
---|
117 | problemData.InputVariables.SetItemCheckedState(input, true);
|
---|
118 | }
|
---|
119 | }
|
---|
120 |
|
---|
121 | private IEnumerable<IDataAnalysisTransformation> CreateDataAnalysisTransformation() {
|
---|
122 | return Transformations.Select(x => new DataAnalysisTransformation(x.OriginalVariable, x.TransformedVariable, (ITransformation)x.Transformation.Clone()));
|
---|
123 | }
|
---|
124 | }
|
---|
125 | }
|
---|