1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2018 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Linq;
|
---|
25 | using HeuristicLab.Common;
|
---|
26 | using HeuristicLab.Core;
|
---|
27 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
28 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
29 | using HeuristicLab.Problems.DataAnalysis;
|
---|
30 | using HeuristicLab.Problems.DataAnalysis.Symbolic;
|
---|
31 |
|
---|
32 | namespace HeuristicLab.Algorithms.DataAnalysis {
|
---|
33 | [StorableClass]
|
---|
34 | [Item("BayesianNonlinearRegressionModel", "")]
|
---|
35 | public sealed class BayesianNonlinearRegressionModel : RegressionModel, IConfidenceRegressionModel {
|
---|
36 | private const int SAMPLE_SIZE = 100;
|
---|
37 |
|
---|
38 |
|
---|
39 | [Storable]
|
---|
40 | public ISymbolicExpressionTree Tree {
|
---|
41 | get; private set;
|
---|
42 | }
|
---|
43 |
|
---|
44 | private double[][] parameterEmpiricalDistribution;
|
---|
45 | public IEnumerable<double[]> ParameterEmpiricalDistribution {
|
---|
46 | get { return parameterEmpiricalDistribution; }
|
---|
47 | }
|
---|
48 |
|
---|
49 | public ISymbolicDataAnalysisExpressionTreeInterpreter Interpreter {
|
---|
50 | get; private set;
|
---|
51 | }
|
---|
52 |
|
---|
53 | public override IEnumerable<string> VariablesUsedForPrediction {
|
---|
54 | get { return allowedInputVariables; }
|
---|
55 | }
|
---|
56 |
|
---|
57 | [Storable]
|
---|
58 | private string[] allowedInputVariables;
|
---|
59 |
|
---|
60 | [StorableConstructor]
|
---|
61 | private BayesianNonlinearRegressionModel(bool deserializing)
|
---|
62 | : base(deserializing) {
|
---|
63 | }
|
---|
64 | private BayesianNonlinearRegressionModel(BayesianNonlinearRegressionModel original, Cloner cloner)
|
---|
65 | : base(original, cloner) {
|
---|
66 | allowedInputVariables = (string[])original.allowedInputVariables.Clone();
|
---|
67 | this.Tree = cloner.Clone(original.Tree);
|
---|
68 | this.parameterEmpiricalDistribution = original.parameterEmpiricalDistribution;
|
---|
69 | this.Interpreter = cloner.Clone(original.Interpreter);
|
---|
70 | }
|
---|
71 | public BayesianNonlinearRegressionModel(
|
---|
72 | ISymbolicExpressionTree tree,
|
---|
73 | double[][] parameterEmpiricalDistribution,
|
---|
74 | ISymbolicDataAnalysisExpressionTreeInterpreter interpreter,
|
---|
75 | string targetVariable,
|
---|
76 | IEnumerable<string> allowedInputVariables
|
---|
77 | )
|
---|
78 | : base(targetVariable) {
|
---|
79 | this.name = ItemName;
|
---|
80 | this.description = ItemDescription;
|
---|
81 | this.Tree = tree;
|
---|
82 | this.parameterEmpiricalDistribution = (double[][])parameterEmpiricalDistribution.Clone();
|
---|
83 | this.Interpreter = interpreter;
|
---|
84 | this.allowedInputVariables = allowedInputVariables.ToArray();
|
---|
85 | }
|
---|
86 |
|
---|
87 | [StorableHook(HookType.AfterDeserialization)]
|
---|
88 | private void AfterDeserialization() {
|
---|
89 | }
|
---|
90 |
|
---|
91 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
92 | return new BayesianNonlinearRegressionModel(this, cloner);
|
---|
93 | }
|
---|
94 |
|
---|
95 |
|
---|
96 | public override IEnumerable<double> GetEstimatedValues(IDataset dataset, IEnumerable<int> rows) {
|
---|
97 | var y = Sample(dataset, rows);
|
---|
98 | return y.Select(yi => yi.Average());
|
---|
99 | }
|
---|
100 |
|
---|
101 | public IEnumerable<double> GetEstimatedVariances(IDataset dataset, IEnumerable<int> rows) {
|
---|
102 | var y = Sample(dataset, rows);
|
---|
103 | return y.Select(yi => yi.VariancePop());
|
---|
104 | }
|
---|
105 |
|
---|
106 | private IList<double>[] Sample(IDataset dataset, IEnumerable<int> rows) {
|
---|
107 | List<double>[] y = rows.Select(_ => new List<double>(SAMPLE_SIZE)).ToArray();
|
---|
108 | var rand = new System.Random(1234); // TODO;
|
---|
109 | for (int s = 0; s < SAMPLE_SIZE; s++) {
|
---|
110 | var paramIdx = rand.Next(parameterEmpiricalDistribution.Length);
|
---|
111 | UpdateConstants(Tree, parameterEmpiricalDistribution[paramIdx]);
|
---|
112 | int predRow = 0;
|
---|
113 | foreach (var pred in Interpreter.GetSymbolicExpressionTreeValues(Tree, dataset, rows)) {
|
---|
114 | y[predRow].Add(pred);
|
---|
115 | predRow++;
|
---|
116 | }
|
---|
117 | }
|
---|
118 | return y;
|
---|
119 | }
|
---|
120 |
|
---|
121 | public override IRegressionSolution CreateRegressionSolution(IRegressionProblemData problemData) {
|
---|
122 | return new ConfidenceRegressionSolution(this, new RegressionProblemData(problemData));
|
---|
123 | }
|
---|
124 |
|
---|
125 |
|
---|
126 | #region taken from ConstantOptEval TODO
|
---|
127 | private static void UpdateConstants(ISymbolicExpressionTree tree, double[] constants) {
|
---|
128 | int i = 0;
|
---|
129 | foreach (var node in tree.Root.IterateNodesPrefix().OfType<SymbolicExpressionTreeTerminalNode>()) {
|
---|
130 | ConstantTreeNode constantTreeNode = node as ConstantTreeNode;
|
---|
131 | VariableTreeNodeBase variableTreeNodeBase = node as VariableTreeNodeBase;
|
---|
132 | FactorVariableTreeNode factorVarTreeNode = node as FactorVariableTreeNode;
|
---|
133 | if (constantTreeNode != null)
|
---|
134 | constantTreeNode.Value = constants[i++];
|
---|
135 | // else if (updateVariableWeights && variableTreeNodeBase != null)
|
---|
136 | // variableTreeNodeBase.Weight = constants[i++];
|
---|
137 | else if (factorVarTreeNode != null) {
|
---|
138 | for (int j = 0; j < factorVarTreeNode.Weights.Length; j++)
|
---|
139 | factorVarTreeNode.Weights[j] = constants[i++];
|
---|
140 | }
|
---|
141 | }
|
---|
142 | }
|
---|
143 | #endregion
|
---|
144 |
|
---|
145 | }
|
---|
146 | }
|
---|