1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2018 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Linq;
|
---|
25 | using System.Threading;
|
---|
26 | using HeuristicLab.Analysis;
|
---|
27 | using HeuristicLab.Common;
|
---|
28 | using HeuristicLab.Core;
|
---|
29 | using HeuristicLab.Data;
|
---|
30 | using HeuristicLab.Optimization;
|
---|
31 | using HeuristicLab.Parameters;
|
---|
32 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
33 | using HeuristicLab.Problems.DataAnalysis;
|
---|
34 | using HeuristicLab.Problems.DataAnalysis.Symbolic;
|
---|
35 | using HeuristicLab.Problems.DataAnalysis.Symbolic.Regression;
|
---|
36 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
37 | using HeuristicLab.Random;
|
---|
38 |
|
---|
39 | namespace HeuristicLab.Algorithms.DataAnalysis {
|
---|
40 | /// <summary>
|
---|
41 | /// Bayesian non-linear regression data analysis algorithm.
|
---|
42 | /// </summary>
|
---|
43 | [Item("Bayesian Nonlinear Regression (BNLR)", "Nonlinear regression algorithm which uses HMC to create samples for the posterior distribution for the model parameters.")]
|
---|
44 | [Creatable(CreatableAttribute.Categories.DataAnalysisRegression, Priority = 120)]
|
---|
45 | [StorableClass]
|
---|
46 | public sealed class BayesianNonlinearRegression : FixedDataAnalysisAlgorithm<IRegressionProblem> {
|
---|
47 | private const string RegressionSolutionResultName = "Regression solution";
|
---|
48 | private const string ModelStructureParameterName = "Model structure";
|
---|
49 | private const string IterationsParameterName = "Iterations";
|
---|
50 | private const string RestartsParameterName = "Restarts";
|
---|
51 | private const string SetSeedRandomlyParameterName = "SetSeedRandomly";
|
---|
52 | private const string SeedParameterName = "Seed";
|
---|
53 | private const string InitParamsRandomlyParameterName = "InitializeParametersRandomly";
|
---|
54 |
|
---|
55 | public IFixedValueParameter<StringValue> ModelStructureParameter {
|
---|
56 | get { return (IFixedValueParameter<StringValue>)Parameters[ModelStructureParameterName]; }
|
---|
57 | }
|
---|
58 | public IFixedValueParameter<IntValue> IterationsParameter {
|
---|
59 | get { return (IFixedValueParameter<IntValue>)Parameters[IterationsParameterName]; }
|
---|
60 | }
|
---|
61 |
|
---|
62 | public IFixedValueParameter<BoolValue> SetSeedRandomlyParameter {
|
---|
63 | get { return (IFixedValueParameter<BoolValue>)Parameters[SetSeedRandomlyParameterName]; }
|
---|
64 | }
|
---|
65 |
|
---|
66 | public IFixedValueParameter<IntValue> SeedParameter {
|
---|
67 | get { return (IFixedValueParameter<IntValue>)Parameters[SeedParameterName]; }
|
---|
68 | }
|
---|
69 |
|
---|
70 | public IFixedValueParameter<IntValue> RestartsParameter {
|
---|
71 | get { return (IFixedValueParameter<IntValue>)Parameters[RestartsParameterName]; }
|
---|
72 | }
|
---|
73 |
|
---|
74 | public IFixedValueParameter<BoolValue> InitParametersRandomlyParameter {
|
---|
75 | get { return (IFixedValueParameter<BoolValue>)Parameters[InitParamsRandomlyParameterName]; }
|
---|
76 | }
|
---|
77 |
|
---|
78 | public IFixedValueParameter<IntValue> LeapFrogStepsParameter {
|
---|
79 | get { return (IFixedValueParameter<IntValue>)Parameters["LeapFrogSteps"]; }
|
---|
80 | }
|
---|
81 | public IFixedValueParameter<DoubleValue> LeapFrogStepSizeParameter {
|
---|
82 | get { return (IFixedValueParameter<DoubleValue>)Parameters["LeapFrogStepSize"]; }
|
---|
83 | }
|
---|
84 | public IFixedValueParameter<DoubleValue> NoiseSigmaParameter {
|
---|
85 | get { return (IFixedValueParameter<DoubleValue>)Parameters["NoiseSigma"]; }
|
---|
86 | }
|
---|
87 |
|
---|
88 | public string ModelStructure {
|
---|
89 | get { return ModelStructureParameter.Value.Value; }
|
---|
90 | set { ModelStructureParameter.Value.Value = value; }
|
---|
91 | }
|
---|
92 |
|
---|
93 | public int Iterations {
|
---|
94 | get { return IterationsParameter.Value.Value; }
|
---|
95 | set { IterationsParameter.Value.Value = value; }
|
---|
96 | }
|
---|
97 |
|
---|
98 | public int Restarts {
|
---|
99 | get { return RestartsParameter.Value.Value; }
|
---|
100 | set { RestartsParameter.Value.Value = value; }
|
---|
101 | }
|
---|
102 |
|
---|
103 | public int Seed {
|
---|
104 | get { return SeedParameter.Value.Value; }
|
---|
105 | set { SeedParameter.Value.Value = value; }
|
---|
106 | }
|
---|
107 |
|
---|
108 | public bool SetSeedRandomly {
|
---|
109 | get { return SetSeedRandomlyParameter.Value.Value; }
|
---|
110 | set { SetSeedRandomlyParameter.Value.Value = value; }
|
---|
111 | }
|
---|
112 |
|
---|
113 | public bool InitializeParametersRandomly {
|
---|
114 | get { return InitParametersRandomlyParameter.Value.Value; }
|
---|
115 | set { InitParametersRandomlyParameter.Value.Value = value; }
|
---|
116 | }
|
---|
117 |
|
---|
118 | public int LeapFrogSteps {
|
---|
119 | get { return LeapFrogStepsParameter.Value.Value; }
|
---|
120 | set { LeapFrogStepsParameter.Value.Value = value; }
|
---|
121 | }
|
---|
122 | public double LeapFrogStepSize {
|
---|
123 | get { return LeapFrogStepSizeParameter.Value.Value; }
|
---|
124 | set { LeapFrogStepSizeParameter.Value.Value = value; }
|
---|
125 | }
|
---|
126 | public double NoiseSigma {
|
---|
127 | get { return NoiseSigmaParameter.Value.Value; }
|
---|
128 | set { NoiseSigmaParameter.Value.Value = value; }
|
---|
129 | }
|
---|
130 |
|
---|
131 | [StorableConstructor]
|
---|
132 | private BayesianNonlinearRegression(bool deserializing) : base(deserializing) { }
|
---|
133 | private BayesianNonlinearRegression(BayesianNonlinearRegression original, Cloner cloner)
|
---|
134 | : base(original, cloner) {
|
---|
135 | }
|
---|
136 | public BayesianNonlinearRegression()
|
---|
137 | : base() {
|
---|
138 | Problem = new RegressionProblem();
|
---|
139 | Parameters.Add(new FixedValueParameter<StringValue>(ModelStructureParameterName, "The function for which the parameters must be fit (only numeric constants are tuned).", new StringValue("1.0 * x*x + 0.0")));
|
---|
140 | Parameters.Add(new FixedValueParameter<IntValue>(IterationsParameterName, "The maximum number of iterations for constants optimization.", new IntValue(200)));
|
---|
141 | Parameters.Add(new FixedValueParameter<IntValue>(RestartsParameterName, "The number of independent random restarts (>0)", new IntValue(10)));
|
---|
142 | Parameters.Add(new FixedValueParameter<IntValue>(SeedParameterName, "The PRNG seed value.", new IntValue()));
|
---|
143 | Parameters.Add(new FixedValueParameter<BoolValue>(SetSeedRandomlyParameterName, "Switch to determine if the random number seed should be initialized randomly.", new BoolValue(true)));
|
---|
144 | Parameters.Add(new FixedValueParameter<BoolValue>(InitParamsRandomlyParameterName, "Switch to determine if the real-valued model parameters should be initialized randomly in each restart.", new BoolValue(false)));
|
---|
145 |
|
---|
146 | Parameters.Add(new FixedValueParameter<IntValue>("LeapFrogSteps", "LeapFrogSteps", new IntValue(10)));
|
---|
147 | Parameters.Add(new FixedValueParameter<DoubleValue>("LeapFrogStepSize", "LeapFrogStepSize", new DoubleValue(0.1)));
|
---|
148 | Parameters.Add(new FixedValueParameter<DoubleValue>("NoiseSigma", "NoiseSigma", new DoubleValue(0.1)));
|
---|
149 |
|
---|
150 | SetParameterHiddenState();
|
---|
151 |
|
---|
152 | InitParametersRandomlyParameter.Value.ValueChanged += (sender, args) => {
|
---|
153 | SetParameterHiddenState();
|
---|
154 | };
|
---|
155 | }
|
---|
156 |
|
---|
157 | private void SetParameterHiddenState() {
|
---|
158 | var hide = !InitializeParametersRandomly;
|
---|
159 | RestartsParameter.Hidden = hide;
|
---|
160 | SeedParameter.Hidden = hide;
|
---|
161 | SetSeedRandomlyParameter.Hidden = hide;
|
---|
162 | }
|
---|
163 |
|
---|
164 | [StorableHook(HookType.AfterDeserialization)]
|
---|
165 | private void AfterDeserialization() {
|
---|
166 | }
|
---|
167 |
|
---|
168 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
169 | return new BayesianNonlinearRegression(this, cloner);
|
---|
170 | }
|
---|
171 |
|
---|
172 | #region nonlinear regression
|
---|
173 | protected override void Run(CancellationToken cancellationToken) {
|
---|
174 | IRegressionSolution bestSolution = null;
|
---|
175 | if (SetSeedRandomly) Seed = (new System.Random()).Next();
|
---|
176 | var rand = new MersenneTwister((uint)Seed);
|
---|
177 |
|
---|
178 | double[][] chain;
|
---|
179 | if (InitializeParametersRandomly) {
|
---|
180 | var qualityTable = new DataTable("RMSE table");
|
---|
181 | qualityTable.VisualProperties.YAxisLogScale = true;
|
---|
182 | var trainRMSERow = new DataRow("RMSE (train)");
|
---|
183 | trainRMSERow.VisualProperties.ChartType = DataRowVisualProperties.DataRowChartType.Points;
|
---|
184 | var testRMSERow = new DataRow("RMSE test");
|
---|
185 | testRMSERow.VisualProperties.ChartType = DataRowVisualProperties.DataRowChartType.Points;
|
---|
186 |
|
---|
187 | qualityTable.Rows.Add(trainRMSERow);
|
---|
188 | qualityTable.Rows.Add(testRMSERow);
|
---|
189 | Results.Add(new Result(qualityTable.Name, qualityTable.Name + " for all restarts", qualityTable));
|
---|
190 | bestSolution = CreateRegressionSolution(Problem.ProblemData, ModelStructure, Iterations, rand, LeapFrogSteps, LeapFrogStepSize, NoiseSigma, out chain);
|
---|
191 | trainRMSERow.Values.Add(bestSolution.TrainingRootMeanSquaredError);
|
---|
192 | testRMSERow.Values.Add(bestSolution.TestRootMeanSquaredError);
|
---|
193 | for (int r = 0; r < Restarts; r++) {
|
---|
194 | var solution = CreateRegressionSolution(Problem.ProblemData, ModelStructure, Iterations, rand, LeapFrogSteps, LeapFrogStepSize, NoiseSigma, out chain);
|
---|
195 | trainRMSERow.Values.Add(solution.TrainingRootMeanSquaredError);
|
---|
196 | testRMSERow.Values.Add(solution.TestRootMeanSquaredError);
|
---|
197 | if (solution.TrainingRootMeanSquaredError < bestSolution.TrainingRootMeanSquaredError) {
|
---|
198 | bestSolution = solution;
|
---|
199 | }
|
---|
200 | }
|
---|
201 | } else {
|
---|
202 | bestSolution = CreateRegressionSolution(Problem.ProblemData, ModelStructure, Iterations, rand, LeapFrogSteps, LeapFrogStepSize, NoiseSigma, out chain);
|
---|
203 | var nRows = chain.First().Length;
|
---|
204 | var chainTable = new DataTable("Chain");
|
---|
205 | var rows = new DataRow[nRows];
|
---|
206 | for (int i = 0; i < nRows; i++) {
|
---|
207 | rows[i] = new DataRow(i.ToString());
|
---|
208 | }
|
---|
209 | foreach(var sample in chain) {
|
---|
210 | for(int i=0;i<sample.Length;i++) {
|
---|
211 | rows[i].Values.Add(sample[i]);
|
---|
212 | }
|
---|
213 | }
|
---|
214 | for (int i = 0; i < nRows; i++) {
|
---|
215 | chainTable.Rows.Add(rows[i]);
|
---|
216 | }
|
---|
217 |
|
---|
218 | Results.Add(new Result("Chain", chainTable));
|
---|
219 | }
|
---|
220 |
|
---|
221 | Results.Add(new Result(RegressionSolutionResultName, "The nonlinear regression solution.", bestSolution));
|
---|
222 | Results.Add(new Result("Root mean square error (train)", "The root of the mean of squared errors of the regression solution on the training set.", new DoubleValue(bestSolution.TrainingRootMeanSquaredError)));
|
---|
223 | Results.Add(new Result("Root mean square error (test)", "The root of the mean of squared errors of the regression solution on the test set.", new DoubleValue(bestSolution.TestRootMeanSquaredError)));
|
---|
224 | }
|
---|
225 |
|
---|
226 | /// <summary>
|
---|
227 | /// Detemines the posterior distribution for the model parameters using Hamiltonian Monte Carlo.
|
---|
228 | /// Model is specified as infix expression containing variable names and numbers.
|
---|
229 | /// Prior distribution for the parameters is N(0,\lambda I)
|
---|
230 | /// </summary>-
|
---|
231 | /// <param name="problemData">Training and test data</param>
|
---|
232 | /// <param name="modelStructure">The function as infix expression</param>
|
---|
233 | /// <param name="maxIterations">Number of samples for HMC</param>
|
---|
234 | public static IRegressionSolution CreateRegressionSolution(
|
---|
235 | IRegressionProblemData problemData, string modelStructure, int maxIterations, IRandom random,
|
---|
236 | int leapFrogSteps, double leapFrogStepSize, double noiseSigma, out double[][] chain
|
---|
237 | ) {
|
---|
238 | var parser = new InfixExpressionParser();
|
---|
239 | var tree = parser.Parse(modelStructure);
|
---|
240 | // parser handles double and string variables equally by creating a VariableTreeNode
|
---|
241 | // post-process to replace VariableTreeNodes by FactorVariableTreeNodes for all string variables
|
---|
242 | var factorSymbol = new FactorVariable();
|
---|
243 | factorSymbol.VariableNames =
|
---|
244 | problemData.AllowedInputVariables.Where(name => problemData.Dataset.VariableHasType<string>(name));
|
---|
245 | factorSymbol.AllVariableNames = factorSymbol.VariableNames;
|
---|
246 | factorSymbol.VariableValues =
|
---|
247 | factorSymbol.VariableNames.Select(name =>
|
---|
248 | new KeyValuePair<string, Dictionary<string, int>>(name,
|
---|
249 | problemData.Dataset.GetReadOnlyStringValues(name).Distinct()
|
---|
250 | .Select((n, i) => Tuple.Create(n, i))
|
---|
251 | .ToDictionary(tup => tup.Item1, tup => tup.Item2)));
|
---|
252 |
|
---|
253 | foreach (var parent in tree.IterateNodesPrefix().ToArray()) {
|
---|
254 | for (int i = 0; i < parent.SubtreeCount; i++) {
|
---|
255 | var varChild = parent.GetSubtree(i) as VariableTreeNode;
|
---|
256 | var factorVarChild = parent.GetSubtree(i) as FactorVariableTreeNode;
|
---|
257 | if (varChild != null && factorSymbol.VariableNames.Contains(varChild.VariableName)) {
|
---|
258 | parent.RemoveSubtree(i);
|
---|
259 | var factorTreeNode = (FactorVariableTreeNode)factorSymbol.CreateTreeNode();
|
---|
260 | factorTreeNode.VariableName = varChild.VariableName;
|
---|
261 | factorTreeNode.Weights =
|
---|
262 | factorTreeNode.Symbol.GetVariableValues(factorTreeNode.VariableName).Select(_ => 1.0).ToArray();
|
---|
263 | // weight = 1.0 for each value
|
---|
264 | parent.InsertSubtree(i, factorTreeNode);
|
---|
265 | } else if (factorVarChild != null && factorSymbol.VariableNames.Contains(factorVarChild.VariableName)) {
|
---|
266 | if (factorSymbol.GetVariableValues(factorVarChild.VariableName).Count() != factorVarChild.Weights.Length)
|
---|
267 | throw new ArgumentException(
|
---|
268 | string.Format("Factor variable {0} needs exactly {1} weights",
|
---|
269 | factorVarChild.VariableName,
|
---|
270 | factorSymbol.GetVariableValues(factorVarChild.VariableName).Count()));
|
---|
271 | parent.RemoveSubtree(i);
|
---|
272 | var factorTreeNode = (FactorVariableTreeNode)factorSymbol.CreateTreeNode();
|
---|
273 | factorTreeNode.VariableName = factorVarChild.VariableName;
|
---|
274 | factorTreeNode.Weights = factorVarChild.Weights;
|
---|
275 | parent.InsertSubtree(i, factorTreeNode);
|
---|
276 | }
|
---|
277 | }
|
---|
278 | }
|
---|
279 |
|
---|
280 | // TODO: useful?
|
---|
281 | // initialize constants randomly
|
---|
282 | // if (random != null) {
|
---|
283 | // foreach (var node in tree.IterateNodesPrefix().OfType<ConstantTreeNode>()) {
|
---|
284 | // double f = Math.Exp(NormalDistributedRandom.NextDouble(random, 0, 1));
|
---|
285 | // double s = random.NextDouble() < 0.5 ? -1 : 1;
|
---|
286 | // node.Value = s * node.Value * f;
|
---|
287 | // }
|
---|
288 | // }
|
---|
289 |
|
---|
290 | double[] initialConstants;
|
---|
291 | var negLogLikelihood = CreateNegLogLikelihoodFunction(problemData, tree, noiseSigma, out initialConstants);
|
---|
292 |
|
---|
293 |
|
---|
294 | // create parameter sample
|
---|
295 | var sampledParameters = HamiltonianMonteCarlo.SampleChain(initialConstants, negLogLikelihood, random, leapFrogStepSize, leapFrogSteps)
|
---|
296 | .Take(maxIterations);
|
---|
297 |
|
---|
298 | chain = sampledParameters.ToArray();
|
---|
299 |
|
---|
300 | var model = new BayesianNonlinearRegressionModel(tree, chain,
|
---|
301 | new SymbolicDataAnalysisExpressionTreeLinearInterpreter(), problemData.TargetVariable, problemData.AllowedInputVariables);
|
---|
302 | var solution = model.CreateRegressionSolution((IRegressionProblemData)problemData.Clone());
|
---|
303 |
|
---|
304 | solution.Model.Name = "Regression Model";
|
---|
305 | solution.Name = "Regression Solution";
|
---|
306 | return solution;
|
---|
307 | }
|
---|
308 |
|
---|
309 | private static Func<double[], Tuple<double, double[]>> CreateNegLogLikelihoodFunction(
|
---|
310 | IRegressionProblemData problemData, ISymbolicExpressionTree tree, double noiseSigma,
|
---|
311 | out double[] initialConstants) {
|
---|
312 | List<TreeToAutoDiffTermConverter.DataForVariable> parameters;
|
---|
313 | TreeToAutoDiffTermConverter.ParametricFunction func;
|
---|
314 | TreeToAutoDiffTermConverter.ParametricFunctionGradient funcGrad;
|
---|
315 | TreeToAutoDiffTermConverter.TryConvertToAutoDiff(tree, false, false, out parameters, out initialConstants, out func, out funcGrad);
|
---|
316 |
|
---|
317 | double variance = noiseSigma * noiseSigma;
|
---|
318 |
|
---|
319 | IDataset ds = problemData.Dataset;
|
---|
320 | var rows = problemData.TrainingIndices;
|
---|
321 | int N = rows.Count();
|
---|
322 | var xs = new double[N][];
|
---|
323 | int row = 0;
|
---|
324 | foreach (var r in rows) {
|
---|
325 | int col = 0;
|
---|
326 | xs[row] = new double[parameters.Count];
|
---|
327 | foreach (var info in parameters) {
|
---|
328 | if (ds.VariableHasType<double>(info.variableName)) {
|
---|
329 | xs[row][col] = ds.GetDoubleValue(info.variableName, r + info.lag);
|
---|
330 | } else if (ds.VariableHasType<string>(info.variableName)) {
|
---|
331 | xs[row][col] = ds.GetStringValue(info.variableName, r) == info.variableValue ? 1 : 0;
|
---|
332 | } else throw new InvalidProgramException("found a variable of unknown type");
|
---|
333 | col++;
|
---|
334 | }
|
---|
335 | row++;
|
---|
336 | }
|
---|
337 | var ys = ds.GetDoubleValues(problemData.TargetVariable, rows).ToArray();
|
---|
338 |
|
---|
339 | return (double[] p) => {
|
---|
340 | var logProbSum = 0.0;
|
---|
341 | var scalingFactor = 1.0 / (2.0 * variance * N);
|
---|
342 | double[] gSum = new double[p.Length];
|
---|
343 | for (int i = 0; i < N; i++) {
|
---|
344 | var fg = funcGrad(p, xs[i]);
|
---|
345 | // sum up err
|
---|
346 | var err = fg.Item2 - ys[i];
|
---|
347 | logProbSum += scalingFactor * err * err;
|
---|
348 |
|
---|
349 | // var llik = (err * err / (2 * sigma * sigma))
|
---|
350 |
|
---|
351 | // sum up grad
|
---|
352 | for (int j = 0; j < gSum.Length; j++) gSum[j] += scalingFactor * 2 * err * fg.Item1[j];
|
---|
353 | }
|
---|
354 |
|
---|
355 |
|
---|
356 | double f = logProbSum /* + N / 2.0 * Math.Log(variance) + N / 2.0 * Math.Log(2 * Math.PI) (constant factors) */;
|
---|
357 | double[] g = gSum /* + N / 2.0 * Math.Log(variance) + N / 2.0 * Math.Log(2 * Math.PI) (constant factors) */;
|
---|
358 | return Tuple.Create(f, g);
|
---|
359 | };
|
---|
360 | }
|
---|
361 |
|
---|
362 |
|
---|
363 | #endregion
|
---|
364 | }
|
---|
365 | }
|
---|