1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2018 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Linq;
|
---|
24 | using HeuristicLab.Common;
|
---|
25 | using HeuristicLab.Core;
|
---|
26 | using HeuristicLab.Data;
|
---|
27 | using HeuristicLab.Parameters;
|
---|
28 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
29 |
|
---|
30 | namespace HeuristicLab.Algorithms.DataAnalysis {
|
---|
31 | [StorableClass]
|
---|
32 | [Item(Name = "MeanLinear", Description = "Linear mean function for Gaussian processes.")]
|
---|
33 | public sealed class MeanLinear : ParameterizedNamedItem, IMeanFunction {
|
---|
34 | public IValueParameter<DoubleArray> WeightsParameter {
|
---|
35 | get { return (IValueParameter<DoubleArray>)Parameters["Weights"]; }
|
---|
36 | }
|
---|
37 |
|
---|
38 | [StorableConstructor]
|
---|
39 | private MeanLinear(bool deserializing) : base(deserializing) { }
|
---|
40 | private MeanLinear(MeanLinear original, Cloner cloner)
|
---|
41 | : base(original, cloner) {
|
---|
42 | }
|
---|
43 | public MeanLinear()
|
---|
44 | : base() {
|
---|
45 | Parameters.Add(new OptionalValueParameter<DoubleArray>("Weights", "The weights parameter for the linear mean function."));
|
---|
46 | }
|
---|
47 |
|
---|
48 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
49 | return new MeanLinear(this, cloner);
|
---|
50 | }
|
---|
51 |
|
---|
52 | public int GetNumberOfParameters(int numberOfVariables) {
|
---|
53 | return WeightsParameter.Value != null ? 0 : numberOfVariables;
|
---|
54 | }
|
---|
55 |
|
---|
56 | public void SetParameter(double[] p) {
|
---|
57 | double[] weights;
|
---|
58 | GetParameter(p, out weights);
|
---|
59 | WeightsParameter.Value = new DoubleArray(weights);
|
---|
60 | }
|
---|
61 |
|
---|
62 | public void GetParameter(double[] p, out double[] weights) {
|
---|
63 | if (WeightsParameter.Value == null) {
|
---|
64 | weights = p;
|
---|
65 | } else {
|
---|
66 | if (p.Length != 0) throw new ArgumentException("The length of the parameter vector does not match the number of free parameters for the linear mean function.", "p");
|
---|
67 | weights = WeightsParameter.Value.ToArray();
|
---|
68 | }
|
---|
69 | }
|
---|
70 |
|
---|
71 | public ParameterizedMeanFunction GetParameterizedMeanFunction(double[] p, int[] columnIndices) {
|
---|
72 | double[] weights;
|
---|
73 | int[] columns = columnIndices;
|
---|
74 | GetParameter(p, out weights);
|
---|
75 | var mf = new ParameterizedMeanFunction();
|
---|
76 | mf.Mean = (x, i) => {
|
---|
77 | // sanity check
|
---|
78 | if (weights.Length != columns.Length) throw new ArgumentException("The number of rparameters must match the number of variables for the linear mean function.");
|
---|
79 | return Util.ScalarProd(weights, Util.GetRow(x, i, columns).ToArray());
|
---|
80 | };
|
---|
81 | mf.Gradient = (x, i, k) => {
|
---|
82 | if (k > columns.Length) throw new ArgumentException();
|
---|
83 | return x[i, columns[k]];
|
---|
84 | };
|
---|
85 | return mf;
|
---|
86 | }
|
---|
87 | }
|
---|
88 | }
|
---|