1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2018 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using HeuristicLab.Common;
|
---|
24 | using HeuristicLab.Core;
|
---|
25 | using HeuristicLab.Data;
|
---|
26 | using HeuristicLab.Parameters;
|
---|
27 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
28 |
|
---|
29 | namespace HeuristicLab.Algorithms.DataAnalysis {
|
---|
30 | [StorableClass]
|
---|
31 | [Item(Name = "CovarianceNoise",
|
---|
32 | Description = "Noise covariance function for Gaussian processes.")]
|
---|
33 | public sealed class CovarianceNoise : ParameterizedNamedItem, ICovarianceFunction {
|
---|
34 | public IValueParameter<DoubleValue> ScaleParameter {
|
---|
35 | get { return (IValueParameter<DoubleValue>)Parameters["Scale"]; }
|
---|
36 | }
|
---|
37 | private bool HasFixedScaleParameter {
|
---|
38 | get { return ScaleParameter.Value != null; }
|
---|
39 | }
|
---|
40 |
|
---|
41 | [StorableConstructor]
|
---|
42 | private CovarianceNoise(bool deserializing)
|
---|
43 | : base(deserializing) {
|
---|
44 | }
|
---|
45 |
|
---|
46 | private CovarianceNoise(CovarianceNoise original, Cloner cloner)
|
---|
47 | : base(original, cloner) {
|
---|
48 | }
|
---|
49 |
|
---|
50 | public CovarianceNoise()
|
---|
51 | : base() {
|
---|
52 | Name = ItemName;
|
---|
53 | Description = ItemDescription;
|
---|
54 |
|
---|
55 | Parameters.Add(new OptionalValueParameter<DoubleValue>("Scale", "The scale of noise."));
|
---|
56 | }
|
---|
57 |
|
---|
58 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
59 | return new CovarianceNoise(this, cloner);
|
---|
60 | }
|
---|
61 |
|
---|
62 | public int GetNumberOfParameters(int numberOfVariables) {
|
---|
63 | return HasFixedScaleParameter ? 0 : 1;
|
---|
64 | }
|
---|
65 |
|
---|
66 | public void SetParameter(double[] p) {
|
---|
67 | double scale;
|
---|
68 | GetParameterValues(p, out scale);
|
---|
69 | ScaleParameter.Value = new DoubleValue(scale);
|
---|
70 | }
|
---|
71 |
|
---|
72 | private void GetParameterValues(double[] p, out double scale) {
|
---|
73 | int c = 0;
|
---|
74 | // gather parameter values
|
---|
75 | if (HasFixedScaleParameter) {
|
---|
76 | scale = ScaleParameter.Value.Value;
|
---|
77 | } else {
|
---|
78 | scale = Math.Exp(2 * p[c]);
|
---|
79 | c++;
|
---|
80 | }
|
---|
81 | if (p.Length != c) throw new ArgumentException("The length of the parameter vector does not match the number of free parameters for CovarianceNoise", "p");
|
---|
82 | }
|
---|
83 |
|
---|
84 | public ParameterizedCovarianceFunction GetParameterizedCovarianceFunction(double[] p, int[] columnIndices) {
|
---|
85 | double scale;
|
---|
86 | GetParameterValues(p, out scale);
|
---|
87 | var fixedScale = HasFixedScaleParameter;
|
---|
88 | // create functions
|
---|
89 | var cov = new ParameterizedCovarianceFunction();
|
---|
90 | cov.Covariance = (x, i, j) => i == j ? scale : 0.0;
|
---|
91 | cov.CrossCovariance = (x, xt, i, j) => Util.SqrDist(x, i, xt, j, columnIndices, 1.0) < 1e-9 ? scale : 0.0;
|
---|
92 | if (fixedScale)
|
---|
93 | cov.CovarianceGradient = (x, i, j) => new double[0];
|
---|
94 | else
|
---|
95 | cov.CovarianceGradient = (x, i, j) => new double[1] { i == j ? 2.0 * scale : 0.0 };
|
---|
96 | return cov;
|
---|
97 | }
|
---|
98 | }
|
---|
99 | }
|
---|