1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2018 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Linq;
|
---|
25 | using HeuristicLab.Common;
|
---|
26 | using HeuristicLab.Core;
|
---|
27 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
28 | using HeuristicLab.Problems.DataAnalysis;
|
---|
29 |
|
---|
30 | namespace HeuristicLab.Algorithms.DataAnalysis {
|
---|
31 | /// <summary>
|
---|
32 | /// Represents a linear regression model
|
---|
33 | /// </summary>
|
---|
34 | [StorableClass]
|
---|
35 | [Item("Linear Regression Model", "Represents a linear regression model.")]
|
---|
36 | public sealed class LinearRegressionModel : RegressionModel, IConfidenceRegressionModel {
|
---|
37 |
|
---|
38 | [Storable]
|
---|
39 | public double[,] C {
|
---|
40 | get; private set;
|
---|
41 | }
|
---|
42 | [Storable]
|
---|
43 | public double[] W {
|
---|
44 | get; private set;
|
---|
45 | }
|
---|
46 |
|
---|
47 | [Storable]
|
---|
48 | public double NoiseSigma {
|
---|
49 | get; private set;
|
---|
50 | }
|
---|
51 |
|
---|
52 | public override IEnumerable<string> VariablesUsedForPrediction {
|
---|
53 | get { return allowedInputVariables; }
|
---|
54 | }
|
---|
55 |
|
---|
56 | [Storable]
|
---|
57 | private string[] allowedInputVariables;
|
---|
58 | [Storable]
|
---|
59 | private List<KeyValuePair<string, IEnumerable<string>>> factorVariables;
|
---|
60 |
|
---|
61 | [StorableConstructor]
|
---|
62 | private LinearRegressionModel(bool deserializing)
|
---|
63 | : base(deserializing) {
|
---|
64 | }
|
---|
65 | private LinearRegressionModel(LinearRegressionModel original, Cloner cloner)
|
---|
66 | : base(original, cloner) {
|
---|
67 | this.W = original.W;
|
---|
68 | this.C = original.C;
|
---|
69 | this.NoiseSigma = original.NoiseSigma;
|
---|
70 |
|
---|
71 | allowedInputVariables = (string[])original.allowedInputVariables.Clone();
|
---|
72 | this.factorVariables = original.factorVariables.Select(kvp => new KeyValuePair<string, IEnumerable<string>>(kvp.Key, new List<string>(kvp.Value))).ToList();
|
---|
73 | }
|
---|
74 | public LinearRegressionModel(double[] w, double[,] covariance, double noiseSigma, string targetVariable, IEnumerable<string> doubleInputVariables, IEnumerable<KeyValuePair<string, IEnumerable<string>>> factorVariables)
|
---|
75 | : base(targetVariable) {
|
---|
76 | this.name = ItemName;
|
---|
77 | this.description = ItemDescription;
|
---|
78 | this.W = new double[w.Length];
|
---|
79 | Array.Copy(w, W, w.Length);
|
---|
80 | this.C = new double[covariance.GetLength(0),covariance.GetLength(1)];
|
---|
81 | Array.Copy(covariance, C, covariance.Length);
|
---|
82 | this.NoiseSigma = noiseSigma;
|
---|
83 | this.allowedInputVariables = doubleInputVariables.ToArray();
|
---|
84 | this.factorVariables = factorVariables.Select(kvp => new KeyValuePair<string, IEnumerable<string>>(kvp.Key, new List<string>(kvp.Value))).ToList();
|
---|
85 | }
|
---|
86 |
|
---|
87 | [StorableHook(HookType.AfterDeserialization)]
|
---|
88 | private void AfterDeserialization() {
|
---|
89 | }
|
---|
90 |
|
---|
91 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
92 | return new LinearRegressionModel(this, cloner);
|
---|
93 | }
|
---|
94 |
|
---|
95 | public override IEnumerable<double> GetEstimatedValues(IDataset dataset, IEnumerable<int> rows) {
|
---|
96 | double[,] inputData = dataset.ToArray(allowedInputVariables, rows);
|
---|
97 | double[,] factorData = dataset.ToArray(factorVariables, rows);
|
---|
98 |
|
---|
99 | inputData = factorData.HorzCat(inputData);
|
---|
100 |
|
---|
101 | int n = inputData.GetLength(0);
|
---|
102 | int columns = inputData.GetLength(1);
|
---|
103 |
|
---|
104 | for (int row = 0; row < n; row++) {
|
---|
105 | double p = 0.0;
|
---|
106 | for (int column = 0; column < columns; column++) {
|
---|
107 | p += W[column] * inputData[row, column];
|
---|
108 | }
|
---|
109 | p += W[columns];
|
---|
110 | yield return p;
|
---|
111 | }
|
---|
112 | }
|
---|
113 |
|
---|
114 | public IEnumerable<double> GetEstimatedVariances(IDataset dataset, IEnumerable<int> rows) {
|
---|
115 | double[,] inputData = dataset.ToArray(allowedInputVariables, rows);
|
---|
116 | double[,] factorData = dataset.ToArray(factorVariables, rows);
|
---|
117 |
|
---|
118 | inputData = factorData.HorzCat(inputData);
|
---|
119 |
|
---|
120 | int n = inputData.GetLength(0);
|
---|
121 | int columns = inputData.GetLength(1);
|
---|
122 |
|
---|
123 | double[] d = new double[C.GetLength(0)];
|
---|
124 |
|
---|
125 | for (int row = 0; row < n; row++) {
|
---|
126 | for (int column = 0; column < columns; column++) {
|
---|
127 | d[column] = inputData[row,column];
|
---|
128 | }
|
---|
129 | d[columns] = 1;
|
---|
130 |
|
---|
131 | double var = 0.0;
|
---|
132 | for(int i=0;i<d.Length;i++) {
|
---|
133 | for(int j = 0;j<d.Length;j++) {
|
---|
134 | var += d[i] * C[i, j] * d[j];
|
---|
135 | }
|
---|
136 | }
|
---|
137 | yield return var + NoiseSigma*NoiseSigma;
|
---|
138 | }
|
---|
139 | }
|
---|
140 |
|
---|
141 |
|
---|
142 | public override IRegressionSolution CreateRegressionSolution(IRegressionProblemData problemData) {
|
---|
143 | return new ConfidenceRegressionSolution(this, new RegressionProblemData(problemData));
|
---|
144 | }
|
---|
145 | }
|
---|
146 | }
|
---|