[15712] | 1 | using System;
|
---|
[15784] | 2 | using System.Collections;
|
---|
| 3 | using System.Collections.Generic;
|
---|
[15712] | 4 | using System.Linq;
|
---|
| 5 | using HeuristicLab.Algorithms.DataAnalysis.SymRegGrammarEnumeration;
|
---|
[15784] | 6 | using HeuristicLab.Common;
|
---|
[15712] | 7 | using HeuristicLab.Core;
|
---|
| 8 | using HeuristicLab.Problems.DataAnalysis;
|
---|
[15776] | 9 | using HeuristicLab.Problems.Instances.DataAnalysis;
|
---|
[15712] | 10 | using HeuristicLab.Random;
|
---|
| 11 | using Microsoft.VisualStudio.TestTools.UnitTesting;
|
---|
| 12 |
|
---|
| 13 | namespace HeuristicLab.Algorithms.DataAnalysis.MctsSymbolicRegression {
|
---|
[15724] | 14 | [TestClass]
|
---|
[15712] | 15 | public class MctsSymbolicRegressionTest {
|
---|
| 16 | private const int Seed = 1234;
|
---|
| 17 | private IRandom rand;
|
---|
| 18 |
|
---|
[15723] | 19 | private const double SuccessThreshold = 0.9999999;
|
---|
[15712] | 20 |
|
---|
[15723] | 21 | private GrammarEnumerationAlgorithm alg;
|
---|
| 22 | private RegressionProblem problem;
|
---|
| 23 |
|
---|
[15712] | 24 | [TestInitialize]
|
---|
| 25 | public void InitTest() {
|
---|
| 26 | rand = new FastRandom(Seed);
|
---|
[15723] | 27 |
|
---|
| 28 | alg = new GrammarEnumerationAlgorithm();
|
---|
| 29 | problem = new RegressionProblem();
|
---|
| 30 | alg.Problem = problem;
|
---|
| 31 | alg.GuiUpdateInterval = int.MaxValue;
|
---|
[15849] | 32 | foreach (IGrammarEnumerationAnalyzer grammarEnumerationAnalyzer in alg.Analyzers) {
|
---|
| 33 | alg.Analyzers.SetItemCheckedState(grammarEnumerationAnalyzer, grammarEnumerationAnalyzer is RSquaredEvaluator);
|
---|
| 34 | }
|
---|
[15883] | 35 | alg.SearchDataStructure = StorageType.PriorityQueue;
|
---|
[15712] | 36 | }
|
---|
| 37 |
|
---|
[15746] | 38 | [TestCleanup]
|
---|
[15724] | 39 | public void Cleanup() {
|
---|
| 40 | if (alg.BestTrainingSentence != null) {
|
---|
[15821] | 41 | Console.WriteLine("Training: " + alg.Grammar.ToInfixString(alg.BestTrainingSentence));
|
---|
[15724] | 42 | }
|
---|
| 43 | }
|
---|
[15723] | 44 |
|
---|
[15726] | 45 | private void EvaluateGrammarEnumeration() {
|
---|
[15723] | 46 | // Evaluate results
|
---|
| 47 | var eps = 1.0 - SuccessThreshold;
|
---|
| 48 |
|
---|
| 49 | // Check if algorithm terminated correctly
|
---|
[15746] | 50 | Assert.IsTrue(alg.Results.ContainsKey("Best solution (Training)"), "No training solution returned!");
|
---|
[15723] | 51 |
|
---|
| 52 | // Check resultss
|
---|
[15746] | 53 | Assert.AreEqual(1.0, ((IRegressionSolution)alg.Results["Best solution (Training)"].Value).TestRSquared, eps, "Test quality too low!");
|
---|
[15723] | 54 | }
|
---|
| 55 |
|
---|
[15712] | 56 | [TestMethod]
|
---|
[15723] | 57 | [TestProperty("Goal", "structure search")]
|
---|
[15784] | 58 | public void NoConstants_Nguyen1() {
|
---|
[15712] | 59 | // x³ + x² + x
|
---|
[16056] | 60 | alg.Evaluator.OptimizeConstants = false;
|
---|
[15860] | 61 | alg.MaxComplexity = 6;
|
---|
[15784] | 62 | alg.Problem.ProblemData = new NguyenFunctionOne(Seed).GenerateRegressionData();
|
---|
[16056] | 63 | alg.SearchDataStructureSize = (int)1e6;
|
---|
[15726] | 64 |
|
---|
| 65 | alg.Start();
|
---|
| 66 |
|
---|
[15849] | 67 | TerminalSymbol constSymbol = alg.Grammar.Const;
|
---|
[15834] | 68 | TerminalSymbol varSymbol = alg.Grammar.VarTerminals.First();
|
---|
[15726] | 69 | TerminalSymbol mulSymbol = alg.Grammar.Multiplication;
|
---|
| 70 | TerminalSymbol addSymbol = alg.Grammar.Addition;
|
---|
| 71 |
|
---|
[16026] | 72 | SymbolList targetSolution = new SymbolList(new[] {
|
---|
[15849] | 73 | constSymbol, varSymbol, varSymbol, varSymbol, mulSymbol, mulSymbol, mulSymbol,
|
---|
| 74 | constSymbol, varSymbol, varSymbol, mulSymbol, mulSymbol, addSymbol,
|
---|
| 75 | constSymbol, varSymbol, mulSymbol, addSymbol,
|
---|
| 76 | constSymbol, addSymbol
|
---|
[15726] | 77 | });
|
---|
| 78 |
|
---|
[15832] | 79 | int targetSolutionHash = alg.Grammar.Hasher.CalcHashCode(targetSolution);
|
---|
| 80 | int actualSolutionHash = alg.Grammar.Hasher.CalcHashCode(alg.BestTrainingSentence);
|
---|
[15726] | 81 |
|
---|
[16056] | 82 | //Assert.IsTrue(alg.DistinctSentencesComplexity.ContainsKey(targetSolutionHash), "Actual solution was not generated!");
|
---|
[15726] | 83 |
|
---|
[15746] | 84 | Assert.AreEqual(targetSolutionHash, actualSolutionHash, "Actual solution was not recognized as best one.");
|
---|
[15726] | 85 |
|
---|
[15746] | 86 | // Evaluate
|
---|
| 87 | EvaluateGrammarEnumeration();
|
---|
[15712] | 88 | }
|
---|
[15723] | 89 |
|
---|
[15773] | 90 | // Too "large" target model for now...
|
---|
| 91 | //[TestMethod]
|
---|
[15723] | 92 | [TestProperty("Goal", "structure search")]
|
---|
[15784] | 93 | public void NoConstants_Nguyen2() {
|
---|
[15712] | 94 | // x^4 + x³ + x² + x
|
---|
[15860] | 95 | alg.MaxComplexity = 11;
|
---|
[15776] | 96 | alg.Problem.ProblemData = new NguyenFunctionTwo(Seed).GenerateRegressionData();
|
---|
[15726] | 97 |
|
---|
| 98 | alg.Start();
|
---|
[15773] | 99 | EvaluateGrammarEnumeration();
|
---|
| 100 | }
|
---|
[15726] | 101 |
|
---|
[15773] | 102 | // Too "large" target model for now...
|
---|
| 103 | //[TestMethod]
|
---|
| 104 | [TestProperty("Goal", "structure search")]
|
---|
[15784] | 105 | public void NoConstants_Nguyen3() {
|
---|
[15773] | 106 | // x^5 + x^4 + x^3 + x^2 + x
|
---|
[15860] | 107 | alg.MaxComplexity = 32;
|
---|
[15776] | 108 | alg.Problem.ProblemData = new NguyenFunctionThree(Seed).GenerateRegressionData();
|
---|
[15746] | 109 |
|
---|
[15773] | 110 | alg.Start();
|
---|
[15746] | 111 |
|
---|
[15773] | 112 | EvaluateGrammarEnumeration();
|
---|
| 113 | }
|
---|
[15746] | 114 |
|
---|
[15784] | 115 | [TestMethod]
|
---|
[15773] | 116 | [TestProperty("Goal", "structure search")]
|
---|
[15784] | 117 | public void NoConstants_Nguyen6() {
|
---|
[15773] | 118 | // sin(x) + sin(x + x²)
|
---|
[16056] | 119 | alg.Evaluator.OptimizeConstants = false;
|
---|
[15860] | 120 | alg.MaxComplexity = 4;
|
---|
[15776] | 121 | alg.Problem.ProblemData = new NguyenFunctionSix(Seed).GenerateRegressionData();
|
---|
[16056] | 122 | alg.SearchDataStructureSize = (int)1e6;
|
---|
[15746] | 123 |
|
---|
[15773] | 124 | alg.Start();
|
---|
[15784] | 125 |
|
---|
[15849] | 126 | TerminalSymbol constSymbol = alg.Grammar.Const;
|
---|
[15834] | 127 | TerminalSymbol varSymbol = alg.Grammar.VarTerminals.First();
|
---|
[15784] | 128 | TerminalSymbol mulSymbol = alg.Grammar.Multiplication;
|
---|
| 129 | TerminalSymbol addSymbol = alg.Grammar.Addition;
|
---|
| 130 | TerminalSymbol sinSymbol = alg.Grammar.Sin;
|
---|
| 131 |
|
---|
[15849] | 132 | // c * sin(c x + c) + c * sin(c * x * x + c * x) + c
|
---|
[16026] | 133 | SymbolList targetSolution = new SymbolList(new[] {
|
---|
[15849] | 134 | varSymbol, constSymbol, mulSymbol, constSymbol, addSymbol, sinSymbol, constSymbol, mulSymbol,
|
---|
| 135 | varSymbol, varSymbol, mulSymbol, constSymbol, mulSymbol, varSymbol, constSymbol, mulSymbol, addSymbol, constSymbol, addSymbol, sinSymbol, constSymbol, mulSymbol, addSymbol,
|
---|
| 136 | constSymbol, addSymbol
|
---|
[15784] | 137 | });
|
---|
| 138 |
|
---|
[15832] | 139 | int targetSolutionHash = alg.Grammar.Hasher.CalcHashCode(targetSolution);
|
---|
| 140 | int actualSolutionHash = alg.Grammar.Hasher.CalcHashCode(alg.BestTrainingSentence);
|
---|
[15784] | 141 |
|
---|
[16056] | 142 | //Assert.IsTrue(alg.DistinctSentencesComplexity.ContainsKey(targetSolutionHash), "Actual solution was not generated!");
|
---|
[15784] | 143 | Assert.AreEqual(targetSolutionHash, actualSolutionHash, "Actual solution was not recognized as best one.");
|
---|
| 144 |
|
---|
[15773] | 145 | EvaluateGrammarEnumeration();
|
---|
| 146 | }
|
---|
[15746] | 147 |
|
---|
[15773] | 148 | [TestMethod]
|
---|
| 149 | [TestProperty("Goal", "structure search")]
|
---|
[15784] | 150 | public void NoConstants_Nguyen9() {
|
---|
[15861] | 151 | // sin(x) + sin(y²)
|
---|
[16056] | 152 | alg.Evaluator.OptimizeConstants = false;
|
---|
[15860] | 153 | alg.MaxComplexity = 3;
|
---|
[15776] | 154 | alg.Problem.ProblemData = new NguyenFunctionNine(Seed).GenerateRegressionData();
|
---|
[16056] | 155 | alg.SearchDataStructureSize = (int)1e6;
|
---|
[15746] | 156 |
|
---|
[15773] | 157 | alg.Start();
|
---|
[15791] | 158 |
|
---|
[15834] | 159 | TerminalSymbol xSymbol = alg.Grammar.VarTerminals.First(v => v.StringRepresentation == "X");
|
---|
| 160 | TerminalSymbol ySymbol = alg.Grammar.VarTerminals.First(v => v.StringRepresentation == "Y");
|
---|
[15849] | 161 | TerminalSymbol constSymbol = alg.Grammar.Const;
|
---|
[15791] | 162 | TerminalSymbol mulSymbol = alg.Grammar.Multiplication;
|
---|
| 163 | TerminalSymbol addSymbol = alg.Grammar.Addition;
|
---|
| 164 | TerminalSymbol sinSymbol = alg.Grammar.Sin;
|
---|
| 165 |
|
---|
[15849] | 166 | // c*sin(c*x + c) + c*sin(c*y*y + c) + c
|
---|
[16026] | 167 | SymbolList targetSolution = new SymbolList(new[] {
|
---|
[15849] | 168 | xSymbol, constSymbol, mulSymbol, constSymbol, addSymbol, sinSymbol, constSymbol, mulSymbol,
|
---|
| 169 | ySymbol, ySymbol, mulSymbol, constSymbol, mulSymbol, constSymbol, addSymbol, sinSymbol, constSymbol, mulSymbol, addSymbol,
|
---|
| 170 | constSymbol, addSymbol
|
---|
[15791] | 171 | });
|
---|
| 172 |
|
---|
[15832] | 173 | int targetSolutionHash = alg.Grammar.Hasher.CalcHashCode(targetSolution);
|
---|
| 174 | int actualSolutionHash = alg.Grammar.Hasher.CalcHashCode(alg.BestTrainingSentence);
|
---|
[15791] | 175 |
|
---|
[16056] | 176 | //Assert.IsTrue(alg.DistinctSentencesComplexity.ContainsKey(targetSolutionHash), "Actual solution was not generated!");
|
---|
[15791] | 177 | Assert.AreEqual(targetSolutionHash, actualSolutionHash, "Actual solution was not recognized as best one.");
|
---|
| 178 |
|
---|
[15726] | 179 | EvaluateGrammarEnumeration();
|
---|
[15712] | 180 | }
|
---|
[15723] | 181 |
|
---|
[15773] | 182 | // Too much variables for now...
|
---|
| 183 | //[TestMethod]
|
---|
[15734] | 184 | [TestProperty("Goal", "structure search")]
|
---|
| 185 | public void MctsSymbReg_NoConstants_Poly10() {
|
---|
[15860] | 186 | alg.MaxComplexity = 10;
|
---|
[15776] | 187 | alg.Problem.ProblemData = new PolyTen(Seed).GenerateRegressionData();
|
---|
[15734] | 188 |
|
---|
| 189 | alg.Start();
|
---|
[15773] | 190 | EvaluateGrammarEnumeration();
|
---|
| 191 | }
|
---|
[15734] | 192 |
|
---|
[15784] | 193 | [TestMethod]
|
---|
| 194 | [TestProperty("Goal", "structure search")]
|
---|
| 195 | public void NoConstants_Inverse() {
|
---|
[15861] | 196 | // x / (log(x)*x + x)
|
---|
[16056] | 197 | alg.Evaluator.OptimizeConstants = false;
|
---|
[15860] | 198 | alg.MaxComplexity = 4;
|
---|
[15734] | 199 |
|
---|
[15784] | 200 | var x = Enumerable.Range(0, 100).Select(_ => rand.NextDouble() + 1.1).ToList();
|
---|
[15791] | 201 | var y = x.Select(xi => xi / (Math.Log(xi) * xi + xi)).ToList();
|
---|
[15784] | 202 | alg.Problem.ProblemData = new RegressionProblemData(new Dataset(new List<string>() { "x", "y" }, new List<IList>() { x, y }), "x".ToEnumerable(), "y");
|
---|
[16056] | 203 | alg.SearchDataStructureSize = (int)1e7;
|
---|
[15784] | 204 |
|
---|
| 205 | alg.Start();
|
---|
| 206 | EvaluateGrammarEnumeration();
|
---|
| 207 | }
|
---|
| 208 |
|
---|
[15859] | 209 | [TestMethod]
|
---|
| 210 | [TestProperty("Goal", "structure search + const op")]
|
---|
| 211 | public void Constants_Nguyen7() {
|
---|
| 212 | // log(x+1) + log(x*x + 1)
|
---|
[15915] | 213 | alg.MaxComplexity = 4;
|
---|
[16056] | 214 | alg.Evaluator.OptimizeConstants = true;
|
---|
[15859] | 215 | alg.Problem.ProblemData = new NguyenFunctionSeven().GenerateRegressionData();
|
---|
[15784] | 216 |
|
---|
[15859] | 217 | alg.Start();
|
---|
| 218 |
|
---|
| 219 | TerminalSymbol constSymbol = alg.Grammar.Const;
|
---|
| 220 | TerminalSymbol varSymbol = alg.Grammar.VarTerminals.First();
|
---|
| 221 | TerminalSymbol mulSymbol = alg.Grammar.Multiplication;
|
---|
| 222 | TerminalSymbol addSymbol = alg.Grammar.Addition;
|
---|
| 223 | TerminalSymbol logSymbol = alg.Grammar.Log;
|
---|
| 224 |
|
---|
[16026] | 225 | SymbolList targetSolution = new SymbolList(new[] {
|
---|
[15859] | 226 | varSymbol, constSymbol, mulSymbol, constSymbol, addSymbol, logSymbol, constSymbol, mulSymbol,
|
---|
| 227 | varSymbol, varSymbol, mulSymbol, constSymbol, mulSymbol, constSymbol, addSymbol, logSymbol, constSymbol, mulSymbol, addSymbol,
|
---|
| 228 | constSymbol, addSymbol
|
---|
| 229 | });
|
---|
| 230 |
|
---|
| 231 | int targetSolutionHash = alg.Grammar.Hasher.CalcHashCode(targetSolution);
|
---|
| 232 | int actualSolutionHash = alg.Grammar.Hasher.CalcHashCode(alg.BestTrainingSentence);
|
---|
| 233 |
|
---|
[15860] | 234 | Assert.IsTrue(alg.DistinctSentencesComplexity.ContainsKey(targetSolutionHash), "Actual solution was not generated!");
|
---|
[15859] | 235 | Assert.AreEqual(targetSolutionHash, actualSolutionHash, "Actual solution was not recognized as best one.");
|
---|
| 236 |
|
---|
| 237 | // Evaluate
|
---|
| 238 | EvaluateGrammarEnumeration();
|
---|
| 239 | }
|
---|
| 240 |
|
---|
| 241 | [TestMethod]
|
---|
| 242 | [TestProperty("Goal", "structure search + const op")]
|
---|
| 243 | public void Constants_Nguyen12() {
|
---|
| 244 | // x*x*x*x - x*x*x + y*y/2 -y
|
---|
[15860] | 245 | alg.MaxComplexity = 10;
|
---|
[16056] | 246 | alg.Evaluator.OptimizeConstants = true;
|
---|
[15859] | 247 | alg.Problem.ProblemData = new NguyenFunctionTwelve().GenerateRegressionData();
|
---|
| 248 |
|
---|
| 249 | alg.Start();
|
---|
| 250 |
|
---|
| 251 | // Evaluate
|
---|
| 252 | EvaluateGrammarEnumeration();
|
---|
| 253 | }
|
---|
| 254 |
|
---|
| 255 | [TestMethod]
|
---|
[15883] | 256 | [TestProperty("Goal", "sinnus const op")]
|
---|
[15859] | 257 | public void Constants_Keijzer3() {
|
---|
| 258 | // 0.3*x*sin(2*pi*x)
|
---|
[15860] | 259 | alg.MaxComplexity = 2;
|
---|
[15859] | 260 | alg.Problem.ProblemData = new KeijzerFunctionThree().GenerateRegressionData();
|
---|
[16056] | 261 | alg.SearchDataStructureSize = (int)1e7;
|
---|
[15859] | 262 |
|
---|
| 263 | alg.Start();
|
---|
| 264 |
|
---|
| 265 | TerminalSymbol constSymbol = alg.Grammar.Const;
|
---|
| 266 | TerminalSymbol varSymbol = alg.Grammar.VarTerminals.First();
|
---|
| 267 | TerminalSymbol mulSymbol = alg.Grammar.Multiplication;
|
---|
| 268 | TerminalSymbol addSymbol = alg.Grammar.Addition;
|
---|
| 269 |
|
---|
[16026] | 270 | SymbolList targetSolution = new SymbolList(new[] {
|
---|
[15859] | 271 | constSymbol, varSymbol, mulSymbol, constSymbol, addSymbol, alg.Grammar.Sin,
|
---|
| 272 | varSymbol, mulSymbol,
|
---|
| 273 | constSymbol, mulSymbol,
|
---|
| 274 | constSymbol, addSymbol
|
---|
| 275 | });
|
---|
| 276 |
|
---|
| 277 | int targetSolutionHash = alg.Grammar.Hasher.CalcHashCode(targetSolution);
|
---|
| 278 | int actualSolutionHash = alg.Grammar.Hasher.CalcHashCode(alg.BestTrainingSentence);
|
---|
| 279 |
|
---|
[16056] | 280 | //Assert.IsTrue(alg.DistinctSentencesComplexity.ContainsKey(targetSolutionHash), "Actual solution was not generated!");
|
---|
[15859] | 281 | Assert.AreEqual(targetSolutionHash, actualSolutionHash, "Actual solution was not recognized as best one.");
|
---|
| 282 |
|
---|
| 283 | // Evaluate
|
---|
| 284 | EvaluateGrammarEnumeration();
|
---|
| 285 | }
|
---|
| 286 |
|
---|
| 287 | [TestMethod]
|
---|
| 288 | [TestProperty("Goal", "structure search + const op")]
|
---|
| 289 | public void Constants_Keijzer5() {
|
---|
| 290 | // (30*x*z) / ((x - 10)*y*y)
|
---|
[15860] | 291 | alg.MaxComplexity = 5;
|
---|
[16056] | 292 | alg.Evaluator.OptimizeConstants = true;
|
---|
[15859] | 293 | alg.Problem.ProblemData = new KeijzerFunctionFive().GenerateRegressionData();
|
---|
[16056] | 294 | alg.SearchDataStructureSize = (int)1e7;
|
---|
[15859] | 295 |
|
---|
| 296 | alg.Start();
|
---|
| 297 |
|
---|
| 298 | TerminalSymbol constSymbol = alg.Grammar.Const;
|
---|
| 299 | TerminalSymbol xSymbol = alg.Grammar.VarTerminals.First(s => s.StringRepresentation == "X");
|
---|
| 300 | TerminalSymbol ySymbol = alg.Grammar.VarTerminals.First(s => s.StringRepresentation == "Y");
|
---|
| 301 | TerminalSymbol zSymbol = alg.Grammar.VarTerminals.First(s => s.StringRepresentation == "Z");
|
---|
| 302 | TerminalSymbol mulSymbol = alg.Grammar.Multiplication;
|
---|
| 303 | TerminalSymbol addSymbol = alg.Grammar.Addition;
|
---|
| 304 | TerminalSymbol invSymbol = alg.Grammar.Inv;
|
---|
| 305 |
|
---|
| 306 | // 30 * x * z * 1/(x*y*y - 10*y*y)
|
---|
| 307 | // --> x z * c * x y * y * c * y y * c * + c + inv c +
|
---|
[16026] | 308 | SymbolList targetSolution = new SymbolList(new[] {
|
---|
[15859] | 309 | xSymbol, zSymbol, mulSymbol, constSymbol, mulSymbol,
|
---|
| 310 | xSymbol, ySymbol, mulSymbol, ySymbol, mulSymbol, constSymbol, mulSymbol,
|
---|
| 311 | ySymbol, ySymbol, mulSymbol, constSymbol, mulSymbol, addSymbol, constSymbol, addSymbol, invSymbol,
|
---|
[15907] | 312 | constSymbol, addSymbol
|
---|
[15859] | 313 | });
|
---|
| 314 |
|
---|
| 315 | int targetSolutionHash = alg.Grammar.Hasher.CalcHashCode(targetSolution);
|
---|
| 316 | int actualSolutionHash = alg.Grammar.Hasher.CalcHashCode(alg.BestTrainingSentence);
|
---|
| 317 |
|
---|
[16056] | 318 | //Assert.IsTrue(alg.DistinctSentencesComplexity.ContainsKey(targetSolutionHash), "Actual solution was not generated!");
|
---|
[15859] | 319 |
|
---|
| 320 | Assert.AreEqual(targetSolutionHash, actualSolutionHash, "Actual solution was not recognized as best one.");
|
---|
| 321 |
|
---|
| 322 | // Evaluate
|
---|
| 323 | EvaluateGrammarEnumeration();
|
---|
| 324 | }
|
---|
| 325 |
|
---|
| 326 |
|
---|
| 327 | [TestMethod]
|
---|
| 328 | [TestProperty("Goal", "structure search + const op")]
|
---|
| 329 | public void Constants_Keijzer12() {
|
---|
| 330 | // x*x*x*x - x*x*x + y*y/2 - y
|
---|
[15860] | 331 | alg.MaxComplexity = 10;
|
---|
[15859] | 332 | alg.Problem.ProblemData = new KeijzerFunctionTwelve().GenerateRegressionData();
|
---|
[16056] | 333 | alg.SearchDataStructureSize = (int)1e7;
|
---|
[15859] | 334 |
|
---|
| 335 | alg.Start();
|
---|
| 336 |
|
---|
| 337 | TerminalSymbol constSymbol = alg.Grammar.Const;
|
---|
| 338 | TerminalSymbol xSymbol = alg.Grammar.VarTerminals.First();
|
---|
| 339 | TerminalSymbol ySymbol = alg.Grammar.VarTerminals.Last();
|
---|
| 340 | TerminalSymbol mulSymbol = alg.Grammar.Multiplication;
|
---|
| 341 | TerminalSymbol addSymbol = alg.Grammar.Addition;
|
---|
| 342 |
|
---|
[16026] | 343 | SymbolList targetSolution = new SymbolList(new[] {
|
---|
[15859] | 344 | xSymbol, xSymbol, mulSymbol, xSymbol, mulSymbol, xSymbol, mulSymbol, constSymbol, mulSymbol,
|
---|
| 345 | xSymbol, xSymbol, mulSymbol, xSymbol, mulSymbol, constSymbol, mulSymbol, addSymbol,
|
---|
| 346 | ySymbol, ySymbol, mulSymbol, constSymbol, mulSymbol, addSymbol,
|
---|
| 347 | ySymbol, constSymbol, mulSymbol, addSymbol,
|
---|
[15907] | 348 | constSymbol, addSymbol
|
---|
[15859] | 349 | });
|
---|
| 350 |
|
---|
| 351 | var x = alg.Grammar.ToInfixString(targetSolution);
|
---|
| 352 |
|
---|
| 353 | int targetSolutionHash = alg.Grammar.Hasher.CalcHashCode(targetSolution);
|
---|
| 354 | int actualSolutionHash = alg.Grammar.Hasher.CalcHashCode(alg.BestTrainingSentence);
|
---|
| 355 |
|
---|
[16056] | 356 | //Assert.IsTrue(alg.DistinctSentencesComplexity.ContainsKey(targetSolutionHash), "Actual solution was not generated!");
|
---|
[15859] | 357 | Assert.AreEqual(targetSolutionHash, actualSolutionHash, "Actual solution was not recognized as best one.");
|
---|
| 358 |
|
---|
| 359 | // Evaluate
|
---|
| 360 | EvaluateGrammarEnumeration();
|
---|
| 361 | }
|
---|
| 362 |
|
---|
| 363 | [TestMethod]
|
---|
| 364 | [TestProperty("Goal", "structure search + const op")]
|
---|
| 365 | public void Constants_Keijzer14() {
|
---|
[15915] | 366 | // 8 / (2 + x*x + y*y)
|
---|
[15860] | 367 | alg.MaxComplexity = 4;
|
---|
[16056] | 368 | alg.Evaluator.OptimizeConstants = true;
|
---|
[15859] | 369 | alg.Problem.ProblemData = new KeijzerFunctionFourteen().GenerateRegressionData();
|
---|
[16056] | 370 | alg.SearchDataStructureSize = (int)1e7;
|
---|
[15859] | 371 |
|
---|
| 372 | alg.Start();
|
---|
[15907] | 373 |
|
---|
[15859] | 374 | TerminalSymbol constSymbol = alg.Grammar.Const;
|
---|
| 375 | TerminalSymbol xSymbol = alg.Grammar.VarTerminals.First();
|
---|
| 376 | TerminalSymbol ySymbol = alg.Grammar.VarTerminals.Last();
|
---|
| 377 | TerminalSymbol mulSymbol = alg.Grammar.Multiplication;
|
---|
| 378 | TerminalSymbol addSymbol = alg.Grammar.Addition;
|
---|
| 379 | TerminalSymbol divSymbol = alg.Grammar.Inv;
|
---|
| 380 |
|
---|
[15907] | 381 |
|
---|
[15859] | 382 | // x x mul c mul y y mul c mul add const add inv const mul const add
|
---|
[16026] | 383 | SymbolList targetSolution = new SymbolList(new[] {
|
---|
[15907] | 384 | xSymbol, xSymbol, mulSymbol, constSymbol, mulSymbol,
|
---|
[15859] | 385 | ySymbol, ySymbol, mulSymbol, constSymbol, mulSymbol, addSymbol,
|
---|
| 386 | constSymbol, addSymbol, divSymbol,
|
---|
| 387 | constSymbol, mulSymbol,
|
---|
| 388 | constSymbol, addSymbol
|
---|
| 389 | });
|
---|
| 390 |
|
---|
| 391 | int targetSolutionHash = alg.Grammar.Hasher.CalcHashCode(targetSolution);
|
---|
| 392 | int actualSolutionHash = alg.Grammar.Hasher.CalcHashCode(alg.BestTrainingSentence);
|
---|
| 393 |
|
---|
[16056] | 394 | //Assert.IsTrue(alg.DistinctSentencesComplexity.ContainsKey(targetSolutionHash), "Actual solution was not generated!");
|
---|
[15859] | 395 | Assert.AreEqual(targetSolutionHash, actualSolutionHash, "Actual solution was not recognized as best one.");
|
---|
| 396 |
|
---|
| 397 | // Evaluate
|
---|
| 398 | EvaluateGrammarEnumeration();
|
---|
| 399 | }
|
---|
| 400 |
|
---|
| 401 |
|
---|
| 402 | [TestMethod]
|
---|
| 403 | [TestProperty("Goal", "structure search + const op")]
|
---|
| 404 | public void Constants_Keijzer15() {
|
---|
| 405 | // x*x*x / 5 + y*y*y / 2 - y - x
|
---|
[15860] | 406 | alg.MaxComplexity = 8;
|
---|
[16056] | 407 | alg.Evaluator.OptimizeConstants = true;
|
---|
[15859] | 408 | alg.Problem.ProblemData = new KeijzerFunctionFifteen().GenerateRegressionData();
|
---|
| 409 |
|
---|
| 410 | alg.Start();
|
---|
| 411 |
|
---|
| 412 | TerminalSymbol constSymbol = alg.Grammar.Const;
|
---|
| 413 | TerminalSymbol xSymbol = alg.Grammar.VarTerminals.First();
|
---|
| 414 | TerminalSymbol ySymbol = alg.Grammar.VarTerminals.Last();
|
---|
| 415 | TerminalSymbol mulSymbol = alg.Grammar.Multiplication;
|
---|
| 416 | TerminalSymbol addSymbol = alg.Grammar.Addition;
|
---|
| 417 |
|
---|
| 418 | // x x * x * const * y y * y * const * + y const * + x const * const +
|
---|
[16026] | 419 | SymbolList targetSolution = new SymbolList(new[] {
|
---|
[15859] | 420 | xSymbol, xSymbol, mulSymbol, xSymbol, mulSymbol, constSymbol, mulSymbol,
|
---|
| 421 | ySymbol, ySymbol, mulSymbol, ySymbol, mulSymbol, constSymbol, mulSymbol, addSymbol,
|
---|
[15907] | 422 | ySymbol, constSymbol, mulSymbol, addSymbol,
|
---|
[15859] | 423 | xSymbol, constSymbol, mulSymbol, addSymbol,
|
---|
| 424 | constSymbol, addSymbol
|
---|
| 425 | });
|
---|
| 426 |
|
---|
| 427 | int targetSolutionHash = alg.Grammar.Hasher.CalcHashCode(targetSolution);
|
---|
| 428 | int actualSolutionHash = alg.Grammar.Hasher.CalcHashCode(alg.BestTrainingSentence);
|
---|
| 429 |
|
---|
[15860] | 430 | Assert.IsTrue(alg.DistinctSentencesComplexity.ContainsKey(targetSolutionHash), "Actual solution was not generated!");
|
---|
[15859] | 431 | Assert.AreEqual(targetSolutionHash, actualSolutionHash, "Actual solution was not recognized as best one.");
|
---|
| 432 |
|
---|
| 433 | // Evaluate
|
---|
| 434 | EvaluateGrammarEnumeration();
|
---|
| 435 | }
|
---|
| 436 |
|
---|
[15907] | 437 | [TestMethod]
|
---|
| 438 | [TestProperty("Goal", "Poly-10 derivatives")]
|
---|
| 439 | public void MctsSymbReg_NoConstants_Poly10_Part1() {
|
---|
[15915] | 440 | alg.MaxComplexity = 12;
|
---|
[16056] | 441 | alg.Evaluator.OptimizeConstants = false;
|
---|
[15907] | 442 | var regProblem = new PolyTen(123).GenerateRegressionData();
|
---|
[15859] | 443 |
|
---|
[15907] | 444 | // Y = X1*X2 + X3*X4 + X5*X6 + X1*X7*X9 + X3*X6*X10
|
---|
| 445 | // Y' = X1*X2 + X3*X4 + X5*X6
|
---|
| 446 | // simplify problem by changing target
|
---|
| 447 | var ds = ((Dataset)regProblem.Dataset).ToModifiable();
|
---|
| 448 | var ys = ds.GetDoubleValues("Y").ToArray();
|
---|
| 449 | var x1 = ds.GetDoubleValues("X1").ToArray();
|
---|
| 450 | var x2 = ds.GetDoubleValues("X2").ToArray();
|
---|
| 451 | var x3 = ds.GetDoubleValues("X3").ToArray();
|
---|
| 452 | var x4 = ds.GetDoubleValues("X4").ToArray();
|
---|
| 453 | var x5 = ds.GetDoubleValues("X5").ToArray();
|
---|
| 454 | var x6 = ds.GetDoubleValues("X6").ToArray();
|
---|
| 455 | var x7 = ds.GetDoubleValues("X7").ToArray();
|
---|
| 456 | var x8 = ds.GetDoubleValues("X8").ToArray();
|
---|
| 457 | var x9 = ds.GetDoubleValues("X9").ToArray();
|
---|
| 458 | var x10 = ds.GetDoubleValues("X10").ToArray();
|
---|
| 459 | for (int i = 0; i < ys.Length; i++) {
|
---|
| 460 | //ys[i] -= x1[i] * x7[i] * x9[i];
|
---|
| 461 | //ys[i] -= x3[i] * x6[i] * x10[i];
|
---|
| 462 | }
|
---|
| 463 | ds.ReplaceVariable("Y", ys.ToList());
|
---|
[15859] | 464 |
|
---|
[15907] | 465 | alg.Problem.ProblemData = new RegressionProblemData(ds, regProblem.AllowedInputVariables, regProblem.TargetVariable);
|
---|
[15859] | 466 |
|
---|
[15907] | 467 | alg.Start();
|
---|
| 468 |
|
---|
| 469 | EvaluateGrammarEnumeration();
|
---|
| 470 | }
|
---|
| 471 |
|
---|
| 472 |
|
---|
| 473 |
|
---|
| 474 |
|
---|
[15773] | 475 | #if false
|
---|
[15734] | 476 |
|
---|
| 477 | [TestMethod]
|
---|
| 478 | [TestProperty("Goal", "structure search")]
|
---|
| 479 | public void MctsSymbReg_NoConstants_15() {
|
---|
| 480 | alg.MaxTreeSize = 5;
|
---|
| 481 | var provider = new HeuristicLab.Problems.Instances.DataAnalysis.KeijzerInstanceProvider(Seed);
|
---|
| 482 | var regProblem = provider.LoadData(provider.GetDataDescriptors().Single(x => x.Name.Contains("15")));
|
---|
| 483 | alg.Problem.ProblemData = regProblem;
|
---|
| 484 |
|
---|
| 485 | alg.Start();
|
---|
[15773] | 486 | EvaluateGrammarEnumeration();
|
---|
[15734] | 487 | }
|
---|
| 488 |
|
---|
[15723] | 489 |
|
---|
[15712] | 490 | [TestMethod]
|
---|
| 491 | [TestCategory("Algorithms.DataAnalysis")]
|
---|
| 492 | [TestProperty("Time", "short")]
|
---|
| 493 | public void MctsSymbReg_NoConstants_Nguyen7() {
|
---|
| 494 | // log(x + 1) + log(x² + 1)
|
---|
| 495 | var provider = new HeuristicLab.Problems.Instances.DataAnalysis.NguyenInstanceProvider(Seed);
|
---|
| 496 | var regProblem = provider.LoadData(provider.GetDataDescriptors().Single(x => x.Name.Contains("F7 ")));
|
---|
| 497 | TestGrammarEnumeration(regProblem);
|
---|
| 498 | }
|
---|
| 499 |
|
---|
| 500 | [TestMethod]
|
---|
| 501 | [TestCategory("Algorithms.DataAnalysis")]
|
---|
| 502 | [TestProperty("Time", "short")]
|
---|
| 503 | public void MctsSymbReg_NoConstants_Poly10_Part1() {
|
---|
| 504 | var provider = new HeuristicLab.Problems.Instances.DataAnalysis.VariousInstanceProvider(Seed);
|
---|
| 505 | var regProblem = provider.LoadData(provider.GetDataDescriptors().Single(x => x.Name.Contains("Poly-10")));
|
---|
| 506 |
|
---|
| 507 | // Y = X1*X2 + X3*X4 + X5*X6 + X1*X7*X9 + X3*X6*X10
|
---|
| 508 | // Y' = X1*X2 + X3*X4 + X5*X6
|
---|
| 509 | // simplify problem by changing target
|
---|
| 510 | var ds = ((Dataset)regProblem.Dataset).ToModifiable();
|
---|
| 511 | var ys = ds.GetDoubleValues("Y").ToArray();
|
---|
| 512 | var x1 = ds.GetDoubleValues("X1").ToArray();
|
---|
| 513 | var x2 = ds.GetDoubleValues("X2").ToArray();
|
---|
| 514 | var x3 = ds.GetDoubleValues("X3").ToArray();
|
---|
| 515 | var x4 = ds.GetDoubleValues("X4").ToArray();
|
---|
| 516 | var x5 = ds.GetDoubleValues("X5").ToArray();
|
---|
| 517 | var x6 = ds.GetDoubleValues("X6").ToArray();
|
---|
| 518 | var x7 = ds.GetDoubleValues("X7").ToArray();
|
---|
| 519 | var x8 = ds.GetDoubleValues("X8").ToArray();
|
---|
| 520 | var x9 = ds.GetDoubleValues("X9").ToArray();
|
---|
| 521 | var x10 = ds.GetDoubleValues("X10").ToArray();
|
---|
| 522 | for (int i = 0; i < ys.Length; i++) {
|
---|
| 523 | ys[i] -= x1[i] * x7[i] * x9[i];
|
---|
| 524 | ys[i] -= x3[i] * x6[i] * x10[i];
|
---|
| 525 | }
|
---|
| 526 | ds.ReplaceVariable("Y", ys.ToList());
|
---|
| 527 |
|
---|
| 528 | var modifiedProblemData = new RegressionProblemData(ds, regProblem.AllowedInputVariables, regProblem.TargetVariable);
|
---|
| 529 |
|
---|
| 530 | TestGrammarEnumeration(modifiedProblemData);
|
---|
| 531 | }
|
---|
| 532 |
|
---|
| 533 | [TestMethod]
|
---|
| 534 | [TestCategory("Algorithms.DataAnalysis")]
|
---|
| 535 | [TestProperty("Time", "short")]
|
---|
| 536 | public void MctsSymbReg_NoConstants_Poly10_Part2() {
|
---|
| 537 | var provider = new HeuristicLab.Problems.Instances.DataAnalysis.VariousInstanceProvider(Seed);
|
---|
| 538 | var regProblem = provider.LoadData(provider.GetDataDescriptors().Single(x => x.Name.Contains("Poly-10")));
|
---|
| 539 |
|
---|
| 540 | // Y = X1*X2 + X3*X4 + X5*X6 + X1*X7*X9 + X3*X6*X10
|
---|
| 541 | // Y' = X1*X7*X9 + X3*X6*X10
|
---|
| 542 | // simplify problem by changing target
|
---|
| 543 | var ds = ((Dataset)regProblem.Dataset).ToModifiable();
|
---|
| 544 | var ys = ds.GetDoubleValues("Y").ToArray();
|
---|
| 545 | var x1 = ds.GetDoubleValues("X1").ToArray();
|
---|
[15784] | 546 | var x2 = ds.GetDoubleValues("X2").ToArray();
|
---|
[15712] | 547 | var x3 = ds.GetDoubleValues("X3").ToArray();
|
---|
| 548 | var x4 = ds.GetDoubleValues("X4").ToArray();
|
---|
| 549 | var x5 = ds.GetDoubleValues("X5").ToArray();
|
---|
| 550 | var x6 = ds.GetDoubleValues("X6").ToArray();
|
---|
| 551 | var x7 = ds.GetDoubleValues("X7").ToArray();
|
---|
| 552 | var x8 = ds.GetDoubleValues("X8").ToArray();
|
---|
| 553 | var x9 = ds.GetDoubleValues("X9").ToArray();
|
---|
| 554 | var x10 = ds.GetDoubleValues("X10").ToArray();
|
---|
| 555 | for (int i = 0; i < ys.Length; i++) {
|
---|
| 556 | ys[i] -= x1[i] * x2[i];
|
---|
| 557 | ys[i] -= x3[i] * x4[i];
|
---|
| 558 | ys[i] -= x5[i] * x6[i];
|
---|
| 559 | }
|
---|
| 560 | ds.ReplaceVariable("Y", ys.ToList());
|
---|
| 561 |
|
---|
| 562 | var modifiedProblemData = new RegressionProblemData(ds, regProblem.AllowedInputVariables, regProblem.TargetVariable);
|
---|
| 563 |
|
---|
| 564 | TestGrammarEnumeration(modifiedProblemData);
|
---|
| 565 | }
|
---|
| 566 |
|
---|
| 567 | [TestMethod]
|
---|
| 568 | [TestCategory("Algorithms.DataAnalysis")]
|
---|
| 569 | [TestProperty("Time", "short")]
|
---|
| 570 | public void MctsSymbReg_NoConstants_Poly10_Part3() {
|
---|
| 571 | var provider = new HeuristicLab.Problems.Instances.DataAnalysis.VariousInstanceProvider(Seed);
|
---|
| 572 | var regProblem = provider.LoadData(provider.GetDataDescriptors().Single(x => x.Name.Contains("Poly-10")));
|
---|
| 573 |
|
---|
| 574 | // Y = X1*X2 + X3*X4 + X5*X6 + X1*X7*X9 + X3*X6*X10
|
---|
| 575 | // Y' = X1*X2 + X1*X7*X9
|
---|
| 576 | // simplify problem by changing target
|
---|
| 577 | var ds = ((Dataset)regProblem.Dataset).ToModifiable();
|
---|
| 578 | var ys = ds.GetDoubleValues("Y").ToArray();
|
---|
| 579 | var x1 = ds.GetDoubleValues("X1").ToArray();
|
---|
| 580 | var x2 = ds.GetDoubleValues("X2").ToArray();
|
---|
| 581 | var x3 = ds.GetDoubleValues("X3").ToArray();
|
---|
| 582 | var x4 = ds.GetDoubleValues("X4").ToArray();
|
---|
| 583 | var x5 = ds.GetDoubleValues("X5").ToArray();
|
---|
| 584 | var x6 = ds.GetDoubleValues("X6").ToArray();
|
---|
| 585 | var x7 = ds.GetDoubleValues("X7").ToArray();
|
---|
| 586 | var x8 = ds.GetDoubleValues("X8").ToArray();
|
---|
| 587 | var x9 = ds.GetDoubleValues("X9").ToArray();
|
---|
| 588 | var x10 = ds.GetDoubleValues("X10").ToArray();
|
---|
| 589 | for (int i = 0; i < ys.Length; i++) {
|
---|
| 590 | ys[i] -= x3[i] * x4[i];
|
---|
| 591 | ys[i] -= x5[i] * x6[i];
|
---|
| 592 | ys[i] -= x3[i] * x6[i] * x10[i];
|
---|
| 593 | }
|
---|
| 594 | ds.ReplaceVariable("Y", ys.ToList());
|
---|
| 595 |
|
---|
| 596 | var modifiedProblemData = new RegressionProblemData(ds, regProblem.AllowedInputVariables, regProblem.TargetVariable);
|
---|
| 597 |
|
---|
| 598 | TestGrammarEnumeration(modifiedProblemData);
|
---|
| 599 | }
|
---|
| 600 |
|
---|
| 601 | [TestMethod]
|
---|
| 602 | [TestCategory("Algorithms.DataAnalysis")]
|
---|
| 603 | [TestProperty("Time", "short")]
|
---|
| 604 | public void MctsSymbReg_NoConstants_Poly10_Part4() {
|
---|
| 605 | var provider = new HeuristicLab.Problems.Instances.DataAnalysis.VariousInstanceProvider(Seed);
|
---|
| 606 | var regProblem = provider.LoadData(provider.GetDataDescriptors().Single(x => x.Name.Contains("Poly-10")));
|
---|
| 607 |
|
---|
| 608 | // Y = X1*X2 + X3*X4 + X5*X6 + X1*X7*X9 + X3*X6*X10
|
---|
| 609 | // Y' = X3*X4 + X5*X6 + X3*X6*X10
|
---|
| 610 | // simplify problem by changing target
|
---|
| 611 | var ds = ((Dataset)regProblem.Dataset).ToModifiable();
|
---|
| 612 | var ys = ds.GetDoubleValues("Y").ToArray();
|
---|
| 613 | var x1 = ds.GetDoubleValues("X1").ToArray();
|
---|
| 614 | var x2 = ds.GetDoubleValues("X2").ToArray();
|
---|
| 615 | var x3 = ds.GetDoubleValues("X3").ToArray();
|
---|
| 616 | var x4 = ds.GetDoubleValues("X4").ToArray();
|
---|
| 617 | var x5 = ds.GetDoubleValues("X5").ToArray();
|
---|
| 618 | var x6 = ds.GetDoubleValues("X6").ToArray();
|
---|
| 619 | var x7 = ds.GetDoubleValues("X7").ToArray();
|
---|
| 620 | var x8 = ds.GetDoubleValues("X8").ToArray();
|
---|
| 621 | var x9 = ds.GetDoubleValues("X9").ToArray();
|
---|
| 622 | var x10 = ds.GetDoubleValues("X10").ToArray();
|
---|
| 623 | for (int i = 0; i < ys.Length; i++) {
|
---|
| 624 | ys[i] -= x1[i] * x2[i];
|
---|
| 625 | ys[i] -= x1[i] * x7[i] * x9[i];
|
---|
| 626 | }
|
---|
| 627 | ds.ReplaceVariable("Y", ys.ToList());
|
---|
| 628 | var modifiedProblemData = new RegressionProblemData(ds, regProblem.AllowedInputVariables, regProblem.TargetVariable);
|
---|
| 629 |
|
---|
| 630 |
|
---|
| 631 | TestGrammarEnumeration(modifiedProblemData);
|
---|
| 632 | }
|
---|
| 633 |
|
---|
| 634 | [TestMethod]
|
---|
| 635 | [TestCategory("Algorithms.DataAnalysis")]
|
---|
| 636 | [TestProperty("Time", "short")]
|
---|
| 637 | public void MctsSymbReg_NoConstants_Poly10_Part5() {
|
---|
| 638 | var provider = new HeuristicLab.Problems.Instances.DataAnalysis.VariousInstanceProvider(Seed);
|
---|
| 639 | var regProblem = provider.LoadData(provider.GetDataDescriptors().Single(x => x.Name.Contains("Poly-10")));
|
---|
| 640 |
|
---|
| 641 | // Y = X1*X2 + X3*X4 + X5*X6 + X1*X7*X9 + X3*X6*X10
|
---|
| 642 | // Y' = X1*X2 + X3*X4 + X5*X6 + X1*X7*X9
|
---|
| 643 | // simplify problem by changing target
|
---|
| 644 | var ds = ((Dataset)regProblem.Dataset).ToModifiable();
|
---|
| 645 | var ys = ds.GetDoubleValues("Y").ToArray();
|
---|
| 646 | var x1 = ds.GetDoubleValues("X1").ToArray();
|
---|
| 647 | var x2 = ds.GetDoubleValues("X2").ToArray();
|
---|
| 648 | var x3 = ds.GetDoubleValues("X3").ToArray();
|
---|
| 649 | var x4 = ds.GetDoubleValues("X4").ToArray();
|
---|
| 650 | var x5 = ds.GetDoubleValues("X5").ToArray();
|
---|
| 651 | var x6 = ds.GetDoubleValues("X6").ToArray();
|
---|
| 652 | var x7 = ds.GetDoubleValues("X7").ToArray();
|
---|
| 653 | var x8 = ds.GetDoubleValues("X8").ToArray();
|
---|
| 654 | var x9 = ds.GetDoubleValues("X9").ToArray();
|
---|
| 655 | var x10 = ds.GetDoubleValues("X10").ToArray();
|
---|
| 656 | for (int i = 0; i < ys.Length; i++) {
|
---|
| 657 | ys[i] -= x3[i] * x6[i] * x10[i];
|
---|
| 658 | }
|
---|
| 659 | ds.ReplaceVariable("Y", ys.ToList());
|
---|
| 660 | var modifiedProblemData = new RegressionProblemData(ds, regProblem.AllowedInputVariables, regProblem.TargetVariable);
|
---|
| 661 |
|
---|
| 662 |
|
---|
| 663 | TestGrammarEnumeration(modifiedProblemData);
|
---|
| 664 | }
|
---|
| 665 |
|
---|
| 666 | [TestMethod]
|
---|
| 667 | [TestCategory("Algorithms.DataAnalysis")]
|
---|
| 668 | [TestProperty("Time", "short")]
|
---|
| 669 | public void MctsSymbReg_NoConstants_Poly10_Part6() {
|
---|
| 670 | var provider = new HeuristicLab.Problems.Instances.DataAnalysis.VariousInstanceProvider(Seed);
|
---|
| 671 | var regProblem = provider.LoadData(provider.GetDataDescriptors().Single(x => x.Name.Contains("Poly-10")));
|
---|
| 672 |
|
---|
| 673 | // Y = X1*X2 + X3*X4 + X5*X6 + X1*X7*X9 + X3*X6*X10
|
---|
| 674 | // Y' = X1*X2 + X3*X4 + X5*X6 + X3*X6*X10
|
---|
| 675 | // simplify problem by changing target
|
---|
| 676 | var ds = ((Dataset)regProblem.Dataset).ToModifiable();
|
---|
| 677 | var ys = ds.GetDoubleValues("Y").ToArray();
|
---|
| 678 | var x1 = ds.GetDoubleValues("X1").ToArray();
|
---|
| 679 | var x2 = ds.GetDoubleValues("X2").ToArray();
|
---|
| 680 | var x3 = ds.GetDoubleValues("X3").ToArray();
|
---|
| 681 | var x4 = ds.GetDoubleValues("X4").ToArray();
|
---|
| 682 | var x5 = ds.GetDoubleValues("X5").ToArray();
|
---|
| 683 | var x6 = ds.GetDoubleValues("X6").ToArray();
|
---|
| 684 | var x7 = ds.GetDoubleValues("X7").ToArray();
|
---|
| 685 | var x8 = ds.GetDoubleValues("X8").ToArray();
|
---|
| 686 | var x9 = ds.GetDoubleValues("X9").ToArray();
|
---|
| 687 | var x10 = ds.GetDoubleValues("X10").ToArray();
|
---|
| 688 | for (int i = 0; i < ys.Length; i++) {
|
---|
| 689 | ys[i] -= x1[i] * x7[i] * x9[i];
|
---|
| 690 | }
|
---|
| 691 | ds.ReplaceVariable("Y", ys.ToList());
|
---|
| 692 | var modifiedProblemData = new RegressionProblemData(ds, regProblem.AllowedInputVariables, regProblem.TargetVariable);
|
---|
| 693 |
|
---|
| 694 | TestGrammarEnumeration(modifiedProblemData);
|
---|
| 695 | }
|
---|
| 696 |
|
---|
| 697 |
|
---|
| 698 | [TestMethod]
|
---|
| 699 | [TestCategory("Algorithms.DataAnalysis")]
|
---|
| 700 | [TestProperty("Time", "long")]
|
---|
| 701 | public void MctsSymbReg_NoConstants_Poly10_250rows() {
|
---|
| 702 | var provider = new HeuristicLab.Problems.Instances.DataAnalysis.VariousInstanceProvider(Seed);
|
---|
| 703 | var regProblem = provider.LoadData(provider.GetDataDescriptors().Single(x => x.Name.Contains("Poly-10")));
|
---|
| 704 | regProblem.TrainingPartition.Start = 0;
|
---|
| 705 | regProblem.TrainingPartition.End = regProblem.Dataset.Rows;
|
---|
| 706 | regProblem.TestPartition.Start = 0;
|
---|
| 707 | regProblem.TestPartition.End = 2;
|
---|
| 708 | TestGrammarEnumeration(regProblem);
|
---|
| 709 | }
|
---|
| 710 |
|
---|
| 711 | [TestMethod]
|
---|
| 712 | [TestCategory("Algorithms.DataAnalysis")]
|
---|
| 713 | [TestProperty("Time", "long")]
|
---|
| 714 | public void MctsSymbReg_NoConstants_Poly10_10000rows() {
|
---|
| 715 | // as poly-10 but more rows
|
---|
| 716 | var x1 = Enumerable.Range(0, 10000).Select(_ => rand.NextDouble()).ToList();
|
---|
| 717 | var x2 = Enumerable.Range(0, 10000).Select(_ => rand.NextDouble()).ToList();
|
---|
| 718 | var x3 = Enumerable.Range(0, 10000).Select(_ => rand.NextDouble()).ToList();
|
---|
| 719 | var x4 = Enumerable.Range(0, 10000).Select(_ => rand.NextDouble()).ToList();
|
---|
| 720 | var x5 = Enumerable.Range(0, 10000).Select(_ => rand.NextDouble()).ToList();
|
---|
| 721 | var x6 = Enumerable.Range(0, 10000).Select(_ => rand.NextDouble()).ToList();
|
---|
| 722 | var x7 = Enumerable.Range(0, 10000).Select(_ => rand.NextDouble()).ToList();
|
---|
| 723 | var x8 = Enumerable.Range(0, 10000).Select(_ => rand.NextDouble()).ToList();
|
---|
| 724 | var x9 = Enumerable.Range(0, 10000).Select(_ => rand.NextDouble()).ToList();
|
---|
| 725 | var x10 = Enumerable.Range(0, 10000).Select(_ => rand.NextDouble()).ToList();
|
---|
| 726 | var ys = new List<double>();
|
---|
| 727 | for (int i = 0; i < x1.Count; i++) {
|
---|
| 728 | ys.Add(x1[i] * x2[i] + x3[i] * x4[i] + x5[i] * x6[i] + x1[i] * x7[i] * x9[i] + x3[i] * x6[i] * x10[i]);
|
---|
| 729 | }
|
---|
| 730 |
|
---|
| 731 | var ds = new Dataset(new string[] { "a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "y" },
|
---|
| 732 | new[] { x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, ys });
|
---|
| 733 |
|
---|
| 734 |
|
---|
| 735 | var problemData = new RegressionProblemData(ds, new string[] { "a", "b", "c", "d", "e", "f", "g", "h", "i", "j" }, "y");
|
---|
| 736 |
|
---|
| 737 | problemData.TrainingPartition.Start = 0;
|
---|
| 738 | problemData.TrainingPartition.End = problemData.Dataset.Rows;
|
---|
| 739 | problemData.TestPartition.Start = 0;
|
---|
| 740 | problemData.TestPartition.End = 2; // must not be empty
|
---|
| 741 |
|
---|
| 742 |
|
---|
| 743 | TestGrammarEnumeration(problemData);
|
---|
| 744 | }
|
---|
| 745 |
|
---|
| 746 | [TestMethod]
|
---|
| 747 | [TestCategory("Algorithms.DataAnalysis")]
|
---|
| 748 | [TestProperty("Time", "short")]
|
---|
| 749 | public void MctsSymbReg_NoConstants_TwoVars() {
|
---|
| 750 |
|
---|
| 751 | // y = x1 + x2 + x1*x2 + x1*x2*x2 + x1*x1*x2
|
---|
| 752 | var x1 = Enumerable.Range(0, 100).Select(_ => rand.NextDouble()).ToList();
|
---|
| 753 | var x2 = Enumerable.Range(0, 100).Select(_ => rand.NextDouble()).ToList();
|
---|
| 754 | var ys = x1.Zip(x2, (x1i, x2i) => x1i + x2i + x1i * x2i + x1i * x2i * x2i + x1i * x1i * x2i).ToList();
|
---|
| 755 |
|
---|
| 756 | var ds = new Dataset(new string[] { "a", "b", "y" }, new[] { x1, x2, ys });
|
---|
| 757 | var problemData = new RegressionProblemData(ds, new string[] { "a", "b" }, "y");
|
---|
| 758 |
|
---|
| 759 | TestGrammarEnumeration(problemData);
|
---|
| 760 | }
|
---|
| 761 |
|
---|
| 762 | [TestMethod]
|
---|
| 763 | [TestCategory("Algorithms.DataAnalysis")]
|
---|
| 764 | [TestProperty("Time", "short")]
|
---|
| 765 | public void MctsSymbReg_NoConstants_Misleading() {
|
---|
| 766 |
|
---|
| 767 | // y = a + baaaaa (the effect of the second term should be very small)
|
---|
| 768 | // the alg will quickly find that a has big effect and will search below a
|
---|
| 769 | // since we prevent a + a... the algorithm must find the correct expression via a + b...
|
---|
| 770 | // however b has a small effect so the branch might not be identified as relevant
|
---|
| 771 | var @as = Enumerable.Range(0, 100).Select(_ => rand.NextDouble()).ToList();
|
---|
| 772 | var bs = Enumerable.Range(0, 100).Select(_ => rand.NextDouble()).ToList();
|
---|
| 773 | var cs = Enumerable.Range(0, 100).Select(_ => rand.NextDouble() * 1.0e-3).ToList();
|
---|
| 774 | var ds = Enumerable.Range(0, 100).Select(_ => rand.NextDouble()).ToList();
|
---|
| 775 | var es = Enumerable.Range(0, 100).Select(_ => rand.NextDouble()).ToList();
|
---|
| 776 | var ys = new double[@as.Count];
|
---|
| 777 | for (int i = 0; i < ys.Length; i++)
|
---|
| 778 | ys[i] = @as[i] + bs[i] + @as[i] * bs[i] * cs[i];
|
---|
| 779 |
|
---|
| 780 | var dataset = new Dataset(new string[] { "a", "b", "c", "d", "e", "y" }, new[] { @as, bs, cs, ds, es, ys.ToList() });
|
---|
| 781 |
|
---|
| 782 | var problemData = new RegressionProblemData(dataset, new string[] { "a", "b", "c", "d", "e" }, "y");
|
---|
| 783 |
|
---|
| 784 | TestGrammarEnumeration(problemData);
|
---|
| 785 | }
|
---|
| 786 |
|
---|
| 787 | [TestMethod]
|
---|
| 788 | [TestCategory("Algorithms.DataAnalysis")]
|
---|
| 789 | [TestProperty("Time", "short")]
|
---|
| 790 | public void MctsSymbRegKeijzer7() {
|
---|
| 791 | // ln(x)
|
---|
| 792 | var provider = new HeuristicLab.Problems.Instances.DataAnalysis.KeijzerInstanceProvider(Seed);
|
---|
| 793 | var regProblem = provider.LoadData(provider.GetDataDescriptors().Single(x => x.Name.Contains("Keijzer 7 f(")));
|
---|
| 794 | // some Keijzer problem instances have very large test partitions (here we are not concerened about test performance)
|
---|
| 795 | if (regProblem.TestPartition.End - regProblem.TestPartition.Start > 1000) regProblem.TestPartition.End = regProblem.TestPartition.Start + 1000;
|
---|
| 796 | TestGrammarEnumeration(regProblem);
|
---|
| 797 | }
|
---|
| 798 |
|
---|
| 799 |
|
---|
| 800 | [TestMethod]
|
---|
| 801 | [TestCategory("Algorithms.DataAnalysis")]
|
---|
| 802 | [TestProperty("Time", "short")]
|
---|
| 803 | public void MctsSymbRegBenchmarkNguyen5() {
|
---|
| 804 | // sin(x²)cos(x) - 1
|
---|
| 805 | var provider = new HeuristicLab.Problems.Instances.DataAnalysis.NguyenInstanceProvider();
|
---|
| 806 | var regProblem = provider.LoadData(provider.GetDataDescriptors().Single(x => x.Name.Contains("F5 ")));
|
---|
| 807 | TestGrammarEnumeration(regProblem);
|
---|
| 808 | }
|
---|
| 809 |
|
---|
| 810 | [TestMethod]
|
---|
| 811 | [TestCategory("Algorithms.DataAnalysis")]
|
---|
| 812 | [TestProperty("Time", "short")]
|
---|
| 813 | public void MctsSymbRegBenchmarkNguyen6() {
|
---|
| 814 | // sin(x) + sin(x + x²)
|
---|
| 815 | var provider = new HeuristicLab.Problems.Instances.DataAnalysis.NguyenInstanceProvider();
|
---|
| 816 | var regProblem = provider.LoadData(provider.GetDataDescriptors().Single(x => x.Name.Contains("F6 ")));
|
---|
| 817 | TestGrammarEnumeration(regProblem);
|
---|
| 818 | }
|
---|
| 819 |
|
---|
| 820 | [TestMethod]
|
---|
| 821 | [TestCategory("Algorithms.DataAnalysis")]
|
---|
| 822 | [TestProperty("Time", "short")]
|
---|
| 823 | public void MctsSymbRegBenchmarkNguyen7() {
|
---|
| 824 | // log(x + 1) + log(x² + 1)
|
---|
| 825 | var provider = new HeuristicLab.Problems.Instances.DataAnalysis.NguyenInstanceProvider(Seed);
|
---|
| 826 | var regProblem = provider.LoadData(provider.GetDataDescriptors().Single(x => x.Name.Contains("F7 ")));
|
---|
| 827 | TestGrammarEnumeration(regProblem);
|
---|
| 828 | }
|
---|
| 829 | [TestMethod]
|
---|
| 830 | [TestCategory("Algorithms.DataAnalysis")]
|
---|
| 831 | [TestProperty("Time", "short")]
|
---|
| 832 | public void MctsSymbRegBenchmarkNguyen8() {
|
---|
| 833 | // Sqrt(x)
|
---|
| 834 | // = x ^ 0.5
|
---|
| 835 | // = exp(0.5 * log(x))
|
---|
| 836 | var provider = new HeuristicLab.Problems.Instances.DataAnalysis.NguyenInstanceProvider(Seed);
|
---|
| 837 | var regProblem = provider.LoadData(provider.GetDataDescriptors().Single(x => x.Name.Contains("F8 ")));
|
---|
| 838 | TestGrammarEnumeration(regProblem);
|
---|
| 839 | }
|
---|
| 840 |
|
---|
| 841 | // [TestMethod]
|
---|
| 842 | [TestCategory("Algorithms.DataAnalysis")]
|
---|
| 843 | [TestProperty("Time", "short")]
|
---|
| 844 | public void MctsSymbRegBenchmarkNguyen9() {
|
---|
| 845 | // sin(x) + sin(y²)
|
---|
| 846 | var provider = new HeuristicLab.Problems.Instances.DataAnalysis.NguyenInstanceProvider();
|
---|
| 847 | var regProblem = provider.LoadData(provider.GetDataDescriptors().Single(x => x.Name.Contains("F9 ")));
|
---|
| 848 | TestGrammarEnumeration(regProblem);
|
---|
| 849 | }
|
---|
| 850 |
|
---|
| 851 | // [TestMethod]
|
---|
| 852 | [TestCategory("Algorithms.DataAnalysis")]
|
---|
| 853 | [TestProperty("Time", "short")]
|
---|
| 854 | public void MctsSymbRegBenchmarkNguyen10() {
|
---|
| 855 | // 2sin(x)cos(y)
|
---|
| 856 | var provider = new HeuristicLab.Problems.Instances.DataAnalysis.NguyenInstanceProvider();
|
---|
| 857 | var regProblem = provider.LoadData(provider.GetDataDescriptors().Single(x => x.Name.Contains("F10 ")));
|
---|
| 858 | TestGrammarEnumeration(regProblem);
|
---|
| 859 | }
|
---|
| 860 |
|
---|
| 861 | [TestMethod]
|
---|
| 862 | [TestCategory("Algorithms.DataAnalysis")]
|
---|
| 863 | [TestProperty("Time", "short")]
|
---|
| 864 | public void MctsSymbRegBenchmarkNguyen11() {
|
---|
| 865 | // x ^ y , x > 0, y > 0
|
---|
| 866 | // = exp(y * log(x))
|
---|
| 867 | var provider = new HeuristicLab.Problems.Instances.DataAnalysis.NguyenInstanceProvider(Seed);
|
---|
| 868 | var regProblem = provider.LoadData(provider.GetDataDescriptors().Single(x => x.Name.Contains("F11 ")));
|
---|
| 869 | TestGrammarEnumeration(regProblem);
|
---|
| 870 | }
|
---|
| 871 | [TestMethod]
|
---|
| 872 | [TestCategory("Algorithms.DataAnalysis")]
|
---|
| 873 | [TestProperty("Time", "short")]
|
---|
| 874 | public void MctsSymbRegBenchmarkNguyen12() {
|
---|
| 875 | // x^4 - x³ + y²/2 - y
|
---|
| 876 | var provider = new HeuristicLab.Problems.Instances.DataAnalysis.NguyenInstanceProvider(Seed);
|
---|
| 877 | var regProblem = provider.LoadData(provider.GetDataDescriptors().Single(x => x.Name.Contains("F12 ")));
|
---|
| 878 | TestGrammarEnumeration(regProblem);
|
---|
| 879 | }
|
---|
| 880 |
|
---|
| 881 | [TestMethod]
|
---|
| 882 | [TestCategory("Algorithms.DataAnalysis")]
|
---|
| 883 | [TestProperty("Time", "long")]
|
---|
| 884 | public void MctsSymbRegBenchmarkKeijzer5() {
|
---|
| 885 | // (30 * x * z) / ((x - 10) * y²)
|
---|
| 886 | // = 30 x z / (xy² - y²)
|
---|
| 887 | var provider = new HeuristicLab.Problems.Instances.DataAnalysis.KeijzerInstanceProvider(Seed);
|
---|
| 888 | var regProblem = provider.LoadData(provider.GetDataDescriptors().Single(x => x.Name.Contains("Keijzer 5 f(")));
|
---|
| 889 | // some Keijzer problem instances have very large test partitions (here we are not concerened about test performance)
|
---|
| 890 | if (regProblem.TestPartition.End - regProblem.TestPartition.Start > 1000) regProblem.TestPartition.End = regProblem.TestPartition.Start + 1000;
|
---|
| 891 | TestGrammarEnumeration(regProblem);
|
---|
| 892 | }
|
---|
| 893 |
|
---|
| 894 | [TestMethod]
|
---|
| 895 | [TestCategory("Algorithms.DataAnalysis")]
|
---|
| 896 | [TestProperty("Time", "short")]
|
---|
| 897 | public void MctsSymbRegBenchmarkKeijzer6() {
|
---|
| 898 | // Keijzer 6 f(x) = Sum(1 / i) From 1 to X , x \in [0..120]
|
---|
| 899 | // we can only approximate this
|
---|
| 900 | var provider = new HeuristicLab.Problems.Instances.DataAnalysis.KeijzerInstanceProvider(Seed);
|
---|
| 901 | var regProblem = provider.LoadData(provider.GetDataDescriptors().Single(x => x.Name.Contains("Keijzer 6 f(")));
|
---|
| 902 | // some Keijzer problem instances have very large test partitions (here we are not concerened about test performance)
|
---|
| 903 | if (regProblem.TestPartition.End - regProblem.TestPartition.Start > 1000) regProblem.TestPartition.End = regProblem.TestPartition.Start + 1000;
|
---|
| 904 | TestGrammarEnumeration(regProblem);
|
---|
| 905 | }
|
---|
| 906 |
|
---|
| 907 | [TestMethod]
|
---|
| 908 | [TestCategory("Algorithms.DataAnalysis")]
|
---|
| 909 | [TestProperty("Time", "short")]
|
---|
| 910 | public void MctsSymbRegBenchmarkKeijzer8() {
|
---|
| 911 | // sqrt(x)
|
---|
| 912 | var provider = new HeuristicLab.Problems.Instances.DataAnalysis.KeijzerInstanceProvider(Seed);
|
---|
| 913 | var regProblem = provider.LoadData(provider.GetDataDescriptors().Single(x => x.Name.Contains("Keijzer 8 f(")));
|
---|
| 914 | // some Keijzer problem instances have very large test partitions (here we are not concerened about test performance)
|
---|
| 915 | if (regProblem.TestPartition.End - regProblem.TestPartition.Start > 1000) regProblem.TestPartition.End = regProblem.TestPartition.Start + 1000;
|
---|
| 916 | TestGrammarEnumeration(regProblem);
|
---|
| 917 | }
|
---|
| 918 |
|
---|
| 919 | [TestMethod]
|
---|
| 920 | [TestCategory("Algorithms.DataAnalysis")]
|
---|
| 921 | [TestProperty("Time", "short")]
|
---|
| 922 | public void MctsSymbRegBenchmarkKeijzer9() {
|
---|
| 923 | // arcsinh(x) i.e. ln(x + sqrt(x² + 1))
|
---|
| 924 | var provider = new HeuristicLab.Problems.Instances.DataAnalysis.KeijzerInstanceProvider(Seed);
|
---|
| 925 | var regProblem = provider.LoadData(provider.GetDataDescriptors().Single(x => x.Name.Contains("Keijzer 9 f(")));
|
---|
| 926 | // some Keijzer problem instances have very large test partitions (here we are not concerened about test performance)
|
---|
| 927 | if (regProblem.TestPartition.End - regProblem.TestPartition.Start > 1000) regProblem.TestPartition.End = regProblem.TestPartition.Start + 1000;
|
---|
| 928 | TestGrammarEnumeration(regProblem);
|
---|
| 929 | }
|
---|
| 930 |
|
---|
| 931 | [TestMethod]
|
---|
| 932 | [TestCategory("Algorithms.DataAnalysis")]
|
---|
| 933 | [TestProperty("Time", "short")]
|
---|
| 934 | public void MctsSymbRegBenchmarkKeijzer11() {
|
---|
| 935 | // xy + sin( (x-1) (y-1) )
|
---|
| 936 | var provider = new HeuristicLab.Problems.Instances.DataAnalysis.KeijzerInstanceProvider();
|
---|
| 937 | var regProblem = provider.LoadData(provider.GetDataDescriptors().Single(x => x.Name.Contains("Keijzer 11 f(")));
|
---|
| 938 | // some Keijzer problem instances have very large test partitions (here we are not concerened about test performance)
|
---|
| 939 | if (regProblem.TestPartition.End - regProblem.TestPartition.Start > 1000) regProblem.TestPartition.End = regProblem.TestPartition.Start + 1000;
|
---|
| 940 | TestGrammarEnumeration(regProblem);
|
---|
| 941 | }
|
---|
| 942 |
|
---|
| 943 | [TestMethod]
|
---|
| 944 | [TestCategory("Algorithms.DataAnalysis")]
|
---|
| 945 | [TestProperty("Time", "short")]
|
---|
| 946 | public void MctsSymbRegBenchmarkKeijzer12() {
|
---|
| 947 | // x^4 - x³ + y² / 2 - y, same as Nguyen 12
|
---|
| 948 | var provider = new HeuristicLab.Problems.Instances.DataAnalysis.KeijzerInstanceProvider(Seed);
|
---|
| 949 | var regProblem = provider.LoadData(provider.GetDataDescriptors().Single(x => x.Name.Contains("Keijzer 12 f(")));
|
---|
| 950 | // some Keijzer problem instances have very large test partitions (here we are not concerened about test performance)
|
---|
| 951 | if (regProblem.TestPartition.End - regProblem.TestPartition.Start > 1000) regProblem.TestPartition.End = regProblem.TestPartition.Start + 1000;
|
---|
| 952 | TestGrammarEnumeration(regProblem);
|
---|
| 953 | }
|
---|
| 954 |
|
---|
| 955 | [TestMethod]
|
---|
| 956 | [TestCategory("Algorithms.DataAnalysis")]
|
---|
| 957 | [TestProperty("Time", "short")]
|
---|
| 958 | public void MctsSymbRegBenchmarkKeijzer14() {
|
---|
| 959 | // 8 / (2 + x² + y²)
|
---|
| 960 | var provider = new HeuristicLab.Problems.Instances.DataAnalysis.KeijzerInstanceProvider(Seed);
|
---|
| 961 | var regProblem = provider.LoadData(provider.GetDataDescriptors().Single(x => x.Name.Contains("Keijzer 14 f(")));
|
---|
| 962 | // some Keijzer problem instances have very large test partitions (here we are not concerened about test performance)
|
---|
| 963 | if (regProblem.TestPartition.End - regProblem.TestPartition.Start > 1000) regProblem.TestPartition.End = regProblem.TestPartition.Start + 1000;
|
---|
| 964 | TestGrammarEnumeration(regProblem);
|
---|
| 965 | }
|
---|
| 966 |
|
---|
| 967 | [TestMethod]
|
---|
| 968 | [TestCategory("Algorithms.DataAnalysis")]
|
---|
| 969 | [TestProperty("Time", "short")]
|
---|
| 970 | public void MctsSymbRegBenchmarkKeijzer15() {
|
---|
| 971 | // x³ / 5 + y³ / 2 - y - x
|
---|
| 972 | var provider = new HeuristicLab.Problems.Instances.DataAnalysis.KeijzerInstanceProvider(Seed);
|
---|
| 973 | var regProblem = provider.LoadData(provider.GetDataDescriptors().Single(x => x.Name.Contains("Keijzer 15 f(")));
|
---|
| 974 | // some Keijzer problem instances have very large test partitions (here we are not concerened about test performance)
|
---|
| 975 | if (regProblem.TestPartition.End - regProblem.TestPartition.Start > 1000) regProblem.TestPartition.End = regProblem.TestPartition.Start + 1000;
|
---|
| 976 | TestGrammarEnumeration(regProblem);
|
---|
| 977 | }
|
---|
[15723] | 978 | #endif
|
---|
[15712] | 979 | }
|
---|
| 980 | }
|
---|