1 | using System;
|
---|
2 | using System.Collections.Generic;
|
---|
3 | using System.Linq;
|
---|
4 | using HeuristicLab.Problems.Instances.DataAnalysis;
|
---|
5 | using HeuristicLab.Random;
|
---|
6 |
|
---|
7 | namespace HeuristicLab.Algorithms.DataAnalysis.SymRegGrammarEnumeration {
|
---|
8 | class AircraftMaximumLift : ArtificialRegressionDataDescriptor {
|
---|
9 | public override string Name { get { return "Aircraft Maximum Lift Coefficient"; } }
|
---|
10 |
|
---|
11 | public override string Description {
|
---|
12 | get {
|
---|
13 | return "Paper: A multilevel block building algorithm for fast modeling generalized separable systems. " +
|
---|
14 | Environment.NewLine +
|
---|
15 | "Author: Chen Chen, Changtong Luo, Zonglin Jiang" + Environment.NewLine;
|
---|
16 | }
|
---|
17 | }
|
---|
18 |
|
---|
19 | protected override string TargetVariable { get { return "f(X)"; } }
|
---|
20 | protected override string[] VariableNames { get { return new string[] { "x1", "x2", "x3", "x4", "x5", "x6", "x7", "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15", "x16", "x17", "x18", "f(X)" }; } }
|
---|
21 | protected override string[] AllowedInputVariables { get { return new string[] { "x1", "x2", "x3", "x4", "x5", "x6", "x7", "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15", "x16", "x17", "x18" }; } }
|
---|
22 | protected override int TrainingPartitionStart { get { return 0; } }
|
---|
23 | protected override int TrainingPartitionEnd { get { return 100; } }
|
---|
24 | protected override int TestPartitionStart { get { return 100; } }
|
---|
25 | protected override int TestPartitionEnd { get { return 200; } }
|
---|
26 |
|
---|
27 | public int Seed { get; private set; }
|
---|
28 |
|
---|
29 | public AircraftMaximumLift() : this((int)System.DateTime.Now.Ticks) { }
|
---|
30 |
|
---|
31 | public AircraftMaximumLift(int seed) {
|
---|
32 | Seed = seed;
|
---|
33 | }
|
---|
34 |
|
---|
35 | protected override List<List<double>> GenerateValues() {
|
---|
36 | var rand = new MersenneTwister((uint)Seed);
|
---|
37 |
|
---|
38 | List<List<double>> data = new List<List<double>>();
|
---|
39 | var x1 = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 0.4, 0.8).ToList();
|
---|
40 |
|
---|
41 | var x2 = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 3.0, 4.0).ToList();
|
---|
42 |
|
---|
43 | var x3 = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 20.0, 30.0).ToList();
|
---|
44 |
|
---|
45 | var x4 = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 2.0, 5.0).ToList();
|
---|
46 | var x13 = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 2.0, 5.0).ToList();
|
---|
47 | var x16 = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 2.0, 5.0).ToList();
|
---|
48 |
|
---|
49 |
|
---|
50 | var x5 = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1.0, 1.5).ToList();
|
---|
51 | var x6 = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 5.0, 7.0).ToList();
|
---|
52 |
|
---|
53 | var x7 = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 0.5, 1.5).ToList();
|
---|
54 | var x10 = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 0.5, 1.5).ToList();
|
---|
55 |
|
---|
56 | var x8 = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1.0, 1.5).ToList();
|
---|
57 | var x11 = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1.0, 1.5).ToList();
|
---|
58 |
|
---|
59 | var x9 = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1.0, 2.0).ToList();
|
---|
60 | var x12 = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1.0, 2.0).ToList();
|
---|
61 |
|
---|
62 | var x14 = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1.0, 1.5).ToList();
|
---|
63 | var x17 = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1.0, 1.5).ToList();
|
---|
64 |
|
---|
65 | var x15 = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 5.0, 7.0).ToList();
|
---|
66 |
|
---|
67 | var x18 = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 10.0, 20.0).ToList();
|
---|
68 |
|
---|
69 | List<double> fx = new List<double>();
|
---|
70 | data.Add(x1);
|
---|
71 | data.Add(x2);
|
---|
72 | data.Add(x3);
|
---|
73 | data.Add(x4);
|
---|
74 | data.Add(x5);
|
---|
75 | data.Add(x6);
|
---|
76 | data.Add(x7);
|
---|
77 | data.Add(x8);
|
---|
78 | data.Add(x9);
|
---|
79 | data.Add(x10);
|
---|
80 | data.Add(x11);
|
---|
81 | data.Add(x12);
|
---|
82 | data.Add(x13);
|
---|
83 | data.Add(x14);
|
---|
84 | data.Add(x15);
|
---|
85 | data.Add(x16);
|
---|
86 | data.Add(x17);
|
---|
87 | data.Add(x18);
|
---|
88 | data.Add(fx);
|
---|
89 |
|
---|
90 | for (int i = 0; i < x1.Count; i++) {
|
---|
91 | double fxi = x1[i];
|
---|
92 | fxi = fxi - 0.25 * x4[i] * x5[i] * x6[i] * (4 + 0.1 * (x2[i] / x3[i]) - (x2[i] / x3[i]) * (x2[i] / x3[i]));
|
---|
93 | fxi = fxi + x13[i] * (x14[i] / x15[i]) * x18[i] * x7[i];
|
---|
94 | fxi = fxi - x13[i] * (x14[i] / x15[i]) * x8[i];
|
---|
95 | fxi = fxi + x13[i] * (x14[i] / x15[i]) * x9[i];
|
---|
96 | fxi = fxi + x16[i] * (x17[i] / x15[i]) * x18[i] * x10[i];
|
---|
97 | fxi = fxi - x16[i] * (x17[i] / x15[i]) * x11[i];
|
---|
98 | fxi = fxi + x16[i] * (x17[i] / x15[i]) * x12[i];
|
---|
99 |
|
---|
100 | fx.Add(fxi);
|
---|
101 | }
|
---|
102 |
|
---|
103 | return data;
|
---|
104 | }
|
---|
105 | }
|
---|
106 | }
|
---|