1 | using System;
|
---|
2 | using System.Collections.Generic;
|
---|
3 | using System.Linq;
|
---|
4 | using HeuristicLab.Problems.Instances.DataAnalysis;
|
---|
5 | using HeuristicLab.Random;
|
---|
6 |
|
---|
7 | namespace HeuristicLab.Algorithms.DataAnalysis.SymRegGrammarEnumeration {
|
---|
8 | class AircraftLift : ArtificialRegressionDataDescriptor {
|
---|
9 | public override string Name { get { return "Aircraft Lift Coefficient C_L = x1*(x2 - 2) + x3*x4*x5/x6"; } }
|
---|
10 |
|
---|
11 | public override string Description {
|
---|
12 | get {
|
---|
13 | return "Paper: A multilevel block building algorithm for fast modeling generalized separable systems. " + Environment.NewLine +
|
---|
14 | "Author: Chen Chen, Changtong Luo, Zonglin Jiang" + Environment.NewLine +
|
---|
15 | "Function: f(X) = x1*(x2 - 2) + x3*x4*x5/x6" + Environment.NewLine +
|
---|
16 | "with x1 in [0.4,0.8], x2 in [5, 10], x3 in [0.4,0.8], x4 in [5,10], x5 in [1,1.5], x6 in [5,7]";
|
---|
17 | }
|
---|
18 | }
|
---|
19 |
|
---|
20 | protected override string TargetVariable { get { return "f(X)"; } }
|
---|
21 | protected override string[] VariableNames { get { return new string[] { "x1", "x2", "x3", "x4", "x5", "x6", "f(X)" }; } }
|
---|
22 | protected override string[] AllowedInputVariables { get { return new string[] { "x1", "x2", "x3", "x4", "x5", "x6" }; } }
|
---|
23 | protected override int TrainingPartitionStart { get { return 0; } }
|
---|
24 | protected override int TrainingPartitionEnd { get { return 100; } }
|
---|
25 | protected override int TestPartitionStart { get { return 100; } }
|
---|
26 | protected override int TestPartitionEnd { get { return 200; } }
|
---|
27 |
|
---|
28 | public int Seed { get; private set; }
|
---|
29 |
|
---|
30 | public AircraftLift() : this((int)System.DateTime.Now.Ticks) { }
|
---|
31 |
|
---|
32 | public AircraftLift(int seed) {
|
---|
33 | Seed = seed;
|
---|
34 | }
|
---|
35 |
|
---|
36 | protected override List<List<double>> GenerateValues() {
|
---|
37 | var rand = new MersenneTwister((uint)Seed);
|
---|
38 |
|
---|
39 | List<List<double>> data = new List<List<double>>();
|
---|
40 | var x1 = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 0.4, 0.8).ToList();
|
---|
41 | var x2 = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 5.0, 10.0).ToList();
|
---|
42 | var x3 = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 0.4, 0.8).ToList();
|
---|
43 | var x4 = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 5.0, 10.0).ToList();
|
---|
44 | var x5 = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 1.0, 1.5).ToList();
|
---|
45 | var x6 = ValueGenerator.GenerateUniformDistributedValues(rand.Next(), TestPartitionEnd, 5.0, 7.0).ToList();
|
---|
46 |
|
---|
47 | List<double> fx = new List<double>();
|
---|
48 | data.Add(x1);
|
---|
49 | data.Add(x2);
|
---|
50 | data.Add(x3);
|
---|
51 | data.Add(x4);
|
---|
52 | data.Add(x5);
|
---|
53 | data.Add(x6);
|
---|
54 | data.Add(fx);
|
---|
55 |
|
---|
56 | for (int i = 0; i < x1.Count; i++) {
|
---|
57 | double fxi = x1[i] * (x2[i] - 2.0) + x3[i] * x4[i] * x5[i] / x6[i];
|
---|
58 | fx.Add(fxi);
|
---|
59 | }
|
---|
60 |
|
---|
61 | return data;
|
---|
62 | }
|
---|
63 | }
|
---|
64 | }
|
---|