1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2018 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Diagnostics;
|
---|
24 | using System.Linq;
|
---|
25 | using HeuristicLab.Analysis;
|
---|
26 | using HeuristicLab.Common;
|
---|
27 | using HeuristicLab.Core;
|
---|
28 | using HeuristicLab.Data;
|
---|
29 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
30 | using HeuristicLab.Optimization;
|
---|
31 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
32 | using HeuristicLab.Problems.DataAnalysis.Symbolic;
|
---|
33 | using HeuristicLab.Problems.DataAnalysis.Symbolic.Regression;
|
---|
34 |
|
---|
35 | namespace HeuristicLab.Algorithms.DataAnalysis.SymRegGrammarEnumeration {
|
---|
36 | [Item("Best Solution Analyzer", "Returns the characteristics of the best solution so far.")]
|
---|
37 | [StorableClass]
|
---|
38 | public class BestSolutionAnalyzer : Item, IGrammarEnumerationAnalyzer {
|
---|
39 | public static readonly string BestTrainingQualityResultName = "Best R² (Training)";
|
---|
40 | public static readonly string BestTestQualityResultName = "Best R² (Test)";
|
---|
41 | public static readonly string BestTrainingModelResultName = "Best model (Training)";
|
---|
42 | public static readonly string BestTrainingSolutionResultName = "Best solution (Training)";
|
---|
43 | public static readonly string BestComplexityResultName = "Best solution complexity";
|
---|
44 | public static readonly string BestSolutions = "Best solutions";
|
---|
45 | public static readonly string ParetoFrontResultName = "Pareto Front";
|
---|
46 | public static readonly string ParetoFrontAnalysisResultName = "Pareto Front Analysis";
|
---|
47 | public static readonly string ParetoFrontSolutionsResultName = "Pareto Front Solutions";
|
---|
48 |
|
---|
49 | private static readonly ISymbolicDataAnalysisExpressionTreeInterpreter expressionTreeLinearInterpreter = new SymbolicDataAnalysisExpressionTreeLinearInterpreter();
|
---|
50 |
|
---|
51 | public BestSolutionAnalyzer() { }
|
---|
52 |
|
---|
53 | [StorableConstructor]
|
---|
54 | protected BestSolutionAnalyzer(bool deserializing) : base(deserializing) { }
|
---|
55 |
|
---|
56 | protected BestSolutionAnalyzer(BestSolutionAnalyzer original, Cloner cloner) : base(original, cloner) {
|
---|
57 | }
|
---|
58 |
|
---|
59 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
60 | return new BestSolutionAnalyzer(this, cloner);
|
---|
61 | }
|
---|
62 |
|
---|
63 | public void Deregister(GrammarEnumerationAlgorithm algorithm) {
|
---|
64 | algorithm.DistinctSentenceGenerated -= AlgorithmDistinctSentenceGenerated;
|
---|
65 | algorithm.Stopped -= AlgorithmOnStopped;
|
---|
66 | }
|
---|
67 |
|
---|
68 | public void Register(GrammarEnumerationAlgorithm algorithm) {
|
---|
69 | algorithm.DistinctSentenceGenerated += AlgorithmDistinctSentenceGenerated;
|
---|
70 | algorithm.Stopped += AlgorithmOnStopped;
|
---|
71 | }
|
---|
72 |
|
---|
73 | private void AlgorithmOnStopped(object sender, EventArgs eventArgs) {
|
---|
74 | var algorithm = (GrammarEnumerationAlgorithm)sender;
|
---|
75 |
|
---|
76 | IResult paretoFrontResult;
|
---|
77 | if (algorithm.Results.TryGetValue(ParetoFrontAnalysisResultName, out paretoFrontResult)) {
|
---|
78 | var plot = (ScatterPlot)paretoFrontResult.Value;
|
---|
79 |
|
---|
80 | var solutions = plot.Rows.First().Points.Select(p => (ISymbolicRegressionSolution)p.Tag);
|
---|
81 |
|
---|
82 | algorithm.Results.AddOrUpdateResult(ParetoFrontSolutionsResultName, new ItemList<ISymbolicRegressionSolution>(solutions));
|
---|
83 | }
|
---|
84 | }
|
---|
85 |
|
---|
86 | private void AlgorithmDistinctSentenceGenerated(object sender, PhraseAddedEventArgs args) {
|
---|
87 | var algorithm = (GrammarEnumerationAlgorithm)sender;
|
---|
88 | var sentence = args.NewPhrase;
|
---|
89 |
|
---|
90 | var results = algorithm.Results;
|
---|
91 | var problemData = algorithm.Problem.ProblemData;
|
---|
92 |
|
---|
93 | SymbolicExpressionTree tree = algorithm.Grammar.ParseSymbolicExpressionTree(sentence);
|
---|
94 | Debug.Assert(SymbolicRegressionConstantOptimizationEvaluator.CanOptimizeConstants(tree));
|
---|
95 |
|
---|
96 | double r2 = algorithm.Evaluator.Evaluate(problemData, tree);
|
---|
97 | int rank = GetRank(sentence);
|
---|
98 |
|
---|
99 | // Store solution in pareto front
|
---|
100 | if (IsParetoOptimal(algorithm, rank, r2)) {
|
---|
101 | var model = new SymbolicRegressionModel(problemData.TargetVariable, tree, expressionTreeLinearInterpreter);
|
---|
102 | model.Scale(problemData);
|
---|
103 | var bestSolution = model.CreateRegressionSolution(problemData);
|
---|
104 |
|
---|
105 | AddToParetoFront(algorithm, rank, r2, bestSolution);
|
---|
106 |
|
---|
107 | // Store overall best solution
|
---|
108 | double bestR2 = results.ContainsKey(BestTrainingQualityResultName)
|
---|
109 | ? GetValue<double>(results[BestTrainingQualityResultName].Value)
|
---|
110 | : 0.0;
|
---|
111 | var bestComplexity = results.ContainsKey(BestComplexityResultName) ? GetValue<int>(results[BestComplexityResultName].Value) : int.MaxValue;
|
---|
112 | var complexity = sentence.Complexity;
|
---|
113 |
|
---|
114 | if (algorithm.BestTrainingSentence == null || r2 > bestR2 || (r2.IsAlmost(bestR2) && complexity < bestComplexity)) {
|
---|
115 | algorithm.BestTrainingSentence = sentence;
|
---|
116 |
|
---|
117 | results.AddOrUpdateResult(BestTrainingQualityResultName, new DoubleValue(bestSolution.TrainingRSquared));
|
---|
118 | results.AddOrUpdateResult(BestTestQualityResultName, new DoubleValue(bestSolution.TestRSquared));
|
---|
119 | results.AddOrUpdateResult(BestTrainingModelResultName, bestSolution.Model);
|
---|
120 | results.AddOrUpdateResult(BestTrainingSolutionResultName, bestSolution);
|
---|
121 | results.AddOrUpdateResult(BestComplexityResultName, new IntValue(complexity));
|
---|
122 |
|
---|
123 | // record best sentence quality & length
|
---|
124 | DataTable dt;
|
---|
125 | if (!results.ContainsKey(BestSolutions)) {
|
---|
126 | var names = new[] { "Quality", "Length", "Complexity", "Timestamp" };
|
---|
127 | dt = new DataTable();
|
---|
128 | foreach (var name in names) {
|
---|
129 | dt.Rows.Add(new DataRow(name) { VisualProperties = { StartIndexZero = true } });
|
---|
130 | }
|
---|
131 | results.AddOrUpdateResult(BestSolutions, dt);
|
---|
132 | }
|
---|
133 | dt = (DataTable)results[BestSolutions].Value;
|
---|
134 | dt.Rows["Quality"].Values.Add(r2);
|
---|
135 | dt.Rows["Length"].Values.Add((double)sentence.Count);
|
---|
136 | dt.Rows["Complexity"].Values.Add(complexity);
|
---|
137 | dt.Rows["Timestamp"].Values.Add(algorithm.ExecutionTime.TotalMilliseconds / 1000d);
|
---|
138 | }
|
---|
139 | }
|
---|
140 |
|
---|
141 | // stop the algorithm if the best quality was already achieved
|
---|
142 | if (r2.IsAlmost(1d)) {
|
---|
143 | algorithm.Stop();
|
---|
144 | }
|
---|
145 | }
|
---|
146 |
|
---|
147 | private T GetValue<T>(IItem value) where T : struct {
|
---|
148 | var v = value as ValueTypeValue<T>;
|
---|
149 | if (v == null)
|
---|
150 | throw new ArgumentException(string.Format("Item is not of type {0}", typeof(ValueTypeValue<T>)));
|
---|
151 | return v.Value;
|
---|
152 | }
|
---|
153 |
|
---|
154 | private int GetRank(SymbolList s) {
|
---|
155 | return s.Complexity;
|
---|
156 | }
|
---|
157 |
|
---|
158 | private bool IsParetoOptimal(GrammarEnumerationAlgorithm algorithm, int currRank, double currQuality) {
|
---|
159 | if (!algorithm.Results.ContainsKey(ParetoFrontResultName)) return true;
|
---|
160 |
|
---|
161 | ItemList<DoubleArray> paretoFront = (ItemList<DoubleArray>)algorithm.Results[ParetoFrontResultName].Value;
|
---|
162 |
|
---|
163 | int preceedingRankIndex = -1;
|
---|
164 | int lastIndex = paretoFront.Count - 1;
|
---|
165 | while (preceedingRankIndex < lastIndex) {
|
---|
166 | if (preceedingRankIndex + 1 > currRank)
|
---|
167 | break;
|
---|
168 | preceedingRankIndex++;
|
---|
169 | }
|
---|
170 |
|
---|
171 | return preceedingRankIndex < 0 || paretoFront[preceedingRankIndex][1] < currQuality;
|
---|
172 | }
|
---|
173 |
|
---|
174 | private void AddToParetoFront(GrammarEnumerationAlgorithm algorithm, int currRank, double currQuality, ISymbolicRegressionSolution solution) {
|
---|
175 | if (!algorithm.Results.ContainsKey(ParetoFrontResultName)) {
|
---|
176 | algorithm.Results.Add(new Result(ParetoFrontResultName, new ItemList<DoubleArray>()));
|
---|
177 |
|
---|
178 | var scatterPlot = new ScatterPlot(ParetoFrontAnalysisResultName, ParetoFrontAnalysisResultName);
|
---|
179 | algorithm.Results.Add(new Result(ParetoFrontAnalysisResultName, scatterPlot));
|
---|
180 | scatterPlot.Rows.Add(new ScatterPlotDataRow());
|
---|
181 |
|
---|
182 | scatterPlot.VisualProperties.XAxisTitle = "Complexity";
|
---|
183 | scatterPlot.VisualProperties.YAxisTitle = "R²";
|
---|
184 | scatterPlot.Rows.First().VisualProperties.PointSize = 10;
|
---|
185 | }
|
---|
186 |
|
---|
187 | ItemList<DoubleArray> paretoFront = (ItemList<DoubleArray>)algorithm.Results[ParetoFrontResultName].Value;
|
---|
188 | ScatterPlotDataRow plot = ((ScatterPlot)algorithm.Results[ParetoFrontAnalysisResultName].Value).Rows.First();
|
---|
189 |
|
---|
190 | // Delete solutions with higher rank, which are now dominated.
|
---|
191 | int i = 0;
|
---|
192 | while (i < paretoFront.Count) {
|
---|
193 | if (paretoFront[i][0] >= currRank) { // Go to current rank
|
---|
194 | double quality = paretoFront[i][1];
|
---|
195 | if (quality <= currQuality) { // If existing solution is worse, delete it
|
---|
196 | RemovePoint(plot, currRank);
|
---|
197 | paretoFront.RemoveAt(i);
|
---|
198 | } else { // Otherwise stop, since following solutions can only be better
|
---|
199 | break;
|
---|
200 | }
|
---|
201 | } else {
|
---|
202 | i++;
|
---|
203 | }
|
---|
204 | }
|
---|
205 |
|
---|
206 | paretoFront.Insert(i, new DoubleArray(new double[] { currRank, currQuality }));
|
---|
207 | plot.Points.Add(new Point2D<double>(currRank, currQuality, solution));
|
---|
208 | }
|
---|
209 |
|
---|
210 | private void RemovePoint(ScatterPlotDataRow plot, double rank) {
|
---|
211 | plot.Points.RemoveAll(p => p.X.IsAlmost(rank));
|
---|
212 | }
|
---|
213 | }
|
---|
214 | }
|
---|