[16053] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2018 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
| 23 | using System.Diagnostics;
|
---|
| 24 | using HeuristicLab.Analysis;
|
---|
| 25 | using HeuristicLab.Common;
|
---|
| 26 | using HeuristicLab.Core;
|
---|
| 27 | using HeuristicLab.Data;
|
---|
| 28 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
| 29 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
| 30 | using HeuristicLab.Problems.DataAnalysis.Symbolic;
|
---|
| 31 | using HeuristicLab.Problems.DataAnalysis.Symbolic.Regression;
|
---|
| 32 |
|
---|
| 33 | namespace HeuristicLab.Algorithms.DataAnalysis.SymRegGrammarEnumeration {
|
---|
| 34 | [Item("Best Solution Analyzer", "Returns the characteristics of the best solution so far.")]
|
---|
| 35 | [StorableClass]
|
---|
| 36 | public class BestSolutionAnalyzer : Item, IGrammarEnumerationAnalyzer {
|
---|
| 37 | public static readonly string BestTrainingQualityResultName = "Best R² (Training)";
|
---|
| 38 | public static readonly string BestTestQualityResultName = "Best R² (Test)";
|
---|
| 39 | public static readonly string BestTrainingModelResultName = "Best model (Training)";
|
---|
| 40 | public static readonly string BestTrainingSolutionResultName = "Best solution (Training)";
|
---|
| 41 | public static readonly string BestComplexityResultName = "Best solution complexity";
|
---|
| 42 | public static readonly string BestSolutions = "Best solutions";
|
---|
| 43 |
|
---|
| 44 | private static readonly ISymbolicDataAnalysisExpressionTreeInterpreter expressionTreeLinearInterpreter = new SymbolicDataAnalysisExpressionTreeLinearInterpreter();
|
---|
| 45 |
|
---|
| 46 | public BestSolutionAnalyzer() { }
|
---|
| 47 |
|
---|
| 48 | [StorableConstructor]
|
---|
| 49 | protected BestSolutionAnalyzer(bool deserializing) : base(deserializing) { }
|
---|
| 50 |
|
---|
| 51 | protected BestSolutionAnalyzer(BestSolutionAnalyzer original, Cloner cloner) : base(original, cloner) {
|
---|
| 52 | }
|
---|
| 53 |
|
---|
| 54 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
| 55 | return new BestSolutionAnalyzer(this, cloner);
|
---|
| 56 | }
|
---|
| 57 |
|
---|
| 58 | public void Deregister(GrammarEnumerationAlgorithm algorithm) {
|
---|
| 59 | algorithm.DistinctSentenceGenerated -= AlgorithmDistinctSentenceGenerated;
|
---|
| 60 | }
|
---|
| 61 |
|
---|
| 62 | public void Register(GrammarEnumerationAlgorithm algorithm) {
|
---|
| 63 | algorithm.DistinctSentenceGenerated += AlgorithmDistinctSentenceGenerated;
|
---|
| 64 | }
|
---|
| 65 |
|
---|
| 66 | private void AlgorithmDistinctSentenceGenerated(object sender, PhraseAddedEventArgs args) {
|
---|
| 67 | var algorithm = (GrammarEnumerationAlgorithm)sender;
|
---|
| 68 | var sentence = args.NewPhrase;
|
---|
| 69 |
|
---|
| 70 | var results = algorithm.Results;
|
---|
| 71 | var grammar = algorithm.Grammar;
|
---|
| 72 | var problemData = algorithm.Problem.ProblemData;
|
---|
| 73 |
|
---|
| 74 | SymbolicExpressionTree tree = algorithm.Grammar.ParseSymbolicExpressionTree(sentence);
|
---|
| 75 | Debug.Assert(SymbolicRegressionConstantOptimizationEvaluator.CanOptimizeConstants(tree));
|
---|
| 76 |
|
---|
| 77 | double r2 = algorithm.Evaluator.Evaluate(problemData, tree);
|
---|
| 78 | double bestR2 = results.ContainsKey(BestTrainingQualityResultName) ? GetValue<double>(results[BestTrainingQualityResultName].Value) : 0.0;
|
---|
| 79 | if (r2 < bestR2)
|
---|
| 80 | return;
|
---|
| 81 |
|
---|
| 82 | var bestComplexity = results.ContainsKey(BestComplexityResultName) ? GetValue<int>(results[BestComplexityResultName].Value) : int.MaxValue;
|
---|
| 83 | var complexity = sentence.Complexity;
|
---|
| 84 |
|
---|
| 85 | if (algorithm.BestTrainingSentence == null || r2 > bestR2 || (r2.IsAlmost(bestR2) && complexity < bestComplexity)) {
|
---|
| 86 | algorithm.BestTrainingSentence = sentence;
|
---|
| 87 |
|
---|
| 88 | var model = new SymbolicRegressionModel(problemData.TargetVariable, tree, expressionTreeLinearInterpreter);
|
---|
| 89 | model.Scale(problemData);
|
---|
| 90 | var bestSolution = model.CreateRegressionSolution(problemData);
|
---|
| 91 |
|
---|
| 92 | results.AddOrUpdateResult(BestTrainingQualityResultName, new DoubleValue(bestSolution.TrainingRSquared));
|
---|
| 93 | results.AddOrUpdateResult(BestTestQualityResultName, new DoubleValue(bestSolution.TestRSquared));
|
---|
| 94 | results.AddOrUpdateResult(BestTrainingModelResultName, bestSolution.Model);
|
---|
| 95 | results.AddOrUpdateResult(BestTrainingSolutionResultName, bestSolution);
|
---|
| 96 | results.AddOrUpdateResult(BestComplexityResultName, new IntValue(complexity));
|
---|
| 97 |
|
---|
| 98 | // record best sentence quality & length
|
---|
| 99 | DataTable dt;
|
---|
| 100 | if (!results.ContainsKey(BestSolutions)) {
|
---|
| 101 | var names = new[] { "Quality", "Length", "Complexity", "Timestamp" };
|
---|
| 102 | dt = new DataTable();
|
---|
| 103 | foreach (var name in names) {
|
---|
| 104 | dt.Rows.Add(new DataRow(name) { VisualProperties = { StartIndexZero = true } });
|
---|
| 105 | }
|
---|
| 106 | results.AddOrUpdateResult(BestSolutions, dt);
|
---|
| 107 | }
|
---|
| 108 | dt = (DataTable)results[BestSolutions].Value;
|
---|
| 109 | dt.Rows["Quality"].Values.Add(r2);
|
---|
| 110 | dt.Rows["Length"].Values.Add((double)sentence.Count);
|
---|
| 111 | dt.Rows["Complexity"].Values.Add(complexity);
|
---|
| 112 | dt.Rows["Timestamp"].Values.Add(algorithm.ExecutionTime.TotalMilliseconds / 1000d);
|
---|
| 113 | }
|
---|
| 114 |
|
---|
| 115 | // stop the algorithm if the best quality was already achieved
|
---|
| 116 | if (r2.IsAlmost(1d)) {
|
---|
| 117 | algorithm.Stop();
|
---|
| 118 | }
|
---|
| 119 | }
|
---|
| 120 |
|
---|
| 121 | private T GetValue<T>(IItem value) where T : struct {
|
---|
| 122 | var v = value as ValueTypeValue<T>;
|
---|
| 123 | if (v == null)
|
---|
| 124 | throw new ArgumentException(string.Format("Item is not of type {0}", typeof(ValueTypeValue<T>)));
|
---|
| 125 | return v.Value;
|
---|
| 126 | }
|
---|
| 127 | }
|
---|
| 128 | }
|
---|