1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2018 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 | using System;
|
---|
22 | using System.Collections.Generic;
|
---|
23 | using System.Linq;
|
---|
24 | using HeuristicLab.Common;
|
---|
25 |
|
---|
26 | namespace HeuristicLab.Problems.TestFunctions.MultiObjective {
|
---|
27 |
|
---|
28 | public static class Hypervolume {
|
---|
29 |
|
---|
30 | /// <summary>
|
---|
31 | /// The Hyprevolume-metric is defined as the Hypervolume enclosed between a given reference point,
|
---|
32 | /// that is fixed for every evaluation function and the evaluated front.
|
---|
33 | ///
|
---|
34 | /// Example:
|
---|
35 | /// r is the reference Point at (1|1) and every Point p is part of the evaluated front
|
---|
36 | /// The filled Area labled HV is the 2 dimensional Hypervolume enclosed by this front.
|
---|
37 | ///
|
---|
38 | /// (0|1) (1|1)
|
---|
39 | /// + +-------------r
|
---|
40 | /// | |###### HV ###|
|
---|
41 | /// | p------+######|
|
---|
42 | /// | p+#####|
|
---|
43 | /// | |#####|
|
---|
44 | /// | p-+###|
|
---|
45 | /// | p---+
|
---|
46 | /// |
|
---|
47 | /// +--------------------1
|
---|
48 | /// (0|0) (1|0)
|
---|
49 | ///
|
---|
50 | /// Please note that in this example both dimensions are minimized. The reference Point need to be dominated by EVERY point in the evaluated front
|
---|
51 | ///
|
---|
52 | /// </summary>
|
---|
53 | ///
|
---|
54 | public static double Calculate(IEnumerable<double[]> front, double[] referencePoint, bool[] maximization) {
|
---|
55 | front = NonDominatedSelect.GetDominatingVectors(front, referencePoint, maximization, false);
|
---|
56 | if (!front.Any()) throw new ArgumentException("No point in the front dominates the referencePoint");
|
---|
57 | if (maximization.Length == 2)
|
---|
58 | return Calculate2D(front, referencePoint, maximization);
|
---|
59 |
|
---|
60 | if (Array.TrueForAll(maximization, x => !x))
|
---|
61 | return CalculateMulitDimensional(front, referencePoint);
|
---|
62 | else throw new NotImplementedException("Hypervolume calculation for more than two dimensions is supported only with minimization problems.");
|
---|
63 | }
|
---|
64 |
|
---|
65 |
|
---|
66 | private static double Calculate2D(IEnumerable<double[]> front, double[] referencePoint, bool[] maximization) {
|
---|
67 | if (front == null) throw new ArgumentNullException("Front must not be null.");
|
---|
68 | if (!front.Any()) throw new ArgumentException("Front must not be empty.");
|
---|
69 |
|
---|
70 | if (referencePoint == null) throw new ArgumentNullException("ReferencePoint must not be null.");
|
---|
71 | if (referencePoint.Length != 2) throw new ArgumentException("ReferencePoint must have exactly two dimensions.");
|
---|
72 |
|
---|
73 | double[][] set = front.ToArray();
|
---|
74 | if (set.Any(s => s.Length != 2)) throw new ArgumentException("Points in front must have exactly two dimensions.");
|
---|
75 |
|
---|
76 | Array.Sort<double[]>(set, new Utilities.DimensionComparer(0, maximization[0]));
|
---|
77 |
|
---|
78 | double sum = 0;
|
---|
79 | for (int i = 0; i < set.Length - 1; i++) {
|
---|
80 | sum += Math.Abs((set[i][0] - set[i + 1][0])) * Math.Abs((set[i][1] - referencePoint[1]));
|
---|
81 | }
|
---|
82 |
|
---|
83 | double[] lastPoint = set[set.Length - 1];
|
---|
84 | sum += Math.Abs(lastPoint[0] - referencePoint[0]) * Math.Abs(lastPoint[1] - referencePoint[1]);
|
---|
85 |
|
---|
86 | return sum;
|
---|
87 | }
|
---|
88 |
|
---|
89 |
|
---|
90 |
|
---|
91 | private static double CalculateMulitDimensional(IEnumerable<double[]> front, double[] referencePoint) {
|
---|
92 | if (referencePoint == null || referencePoint.Length < 3) throw new ArgumentException("ReferencePoint unfit for complex Hypervolume calculation");
|
---|
93 |
|
---|
94 | int objectives = referencePoint.Length;
|
---|
95 | var fronList = front.ToList();
|
---|
96 | fronList.StableSort(new Utilities.DimensionComparer(objectives - 1, false));
|
---|
97 |
|
---|
98 | double[] regLow = Enumerable.Repeat(1E15, objectives).ToArray();
|
---|
99 | foreach (double[] p in fronList) {
|
---|
100 | for (int i = 0; i < regLow.Length; i++) {
|
---|
101 | if (p[i] < regLow[i]) regLow[i] = p[i];
|
---|
102 | }
|
---|
103 | }
|
---|
104 |
|
---|
105 | return Stream(regLow, referencePoint, fronList, 0, referencePoint[objectives - 1], (int)Math.Sqrt(fronList.Count), objectives);
|
---|
106 | }
|
---|
107 |
|
---|
108 | private static double Stream(double[] regionLow, double[] regionUp, List<double[]> front, int split, double cover, int sqrtNoPoints, int objectives) {
|
---|
109 | double coverOld = cover;
|
---|
110 | int coverIndex = 0;
|
---|
111 | int coverIndexOld = -1;
|
---|
112 | int c;
|
---|
113 | double result = 0;
|
---|
114 |
|
---|
115 | double dMeasure = GetMeasure(regionLow, regionUp, objectives);
|
---|
116 | while (cover == coverOld && coverIndex < front.Count()) {
|
---|
117 | if (coverIndexOld == coverIndex) break;
|
---|
118 | coverIndexOld = coverIndex;
|
---|
119 | if (Covers(front[coverIndex], regionLow, objectives)) {
|
---|
120 | cover = front[coverIndex][objectives - 1];
|
---|
121 | result += dMeasure * (coverOld - cover);
|
---|
122 | } else coverIndex++;
|
---|
123 |
|
---|
124 | }
|
---|
125 |
|
---|
126 | for (c = coverIndex; c > 0; c--) if (front[c - 1][objectives - 1] == cover) coverIndex--;
|
---|
127 | if (coverIndex == 0) return result;
|
---|
128 |
|
---|
129 | bool allPiles = true;
|
---|
130 | int[] piles = new int[coverIndex];
|
---|
131 | for (int i = 0; i < coverIndex; i++) {
|
---|
132 | piles[i] = IsPile(front[i], regionLow, regionUp, objectives);
|
---|
133 | if (piles[i] == -1) {
|
---|
134 | allPiles = false;
|
---|
135 | break;
|
---|
136 | }
|
---|
137 | }
|
---|
138 |
|
---|
139 | if (allPiles) {
|
---|
140 | double[] trellis = new double[regionUp.Length];
|
---|
141 | for (int j = 0; j < trellis.Length; j++) trellis[j] = regionUp[j];
|
---|
142 | double current = 0;
|
---|
143 | double next = 0;
|
---|
144 | int i = 0;
|
---|
145 | do {
|
---|
146 | current = front[i][objectives - 1];
|
---|
147 | do {
|
---|
148 | if (front[i][piles[i]] < trellis[piles[i]]) trellis[piles[i]] = front[i][piles[i]];
|
---|
149 | i++;
|
---|
150 | if (i < coverIndex) next = front[i][objectives - 1];
|
---|
151 | else { next = cover; break; }
|
---|
152 | } while (next == current);
|
---|
153 | result += ComputeTrellis(regionLow, regionUp, trellis, objectives) * (next - current);
|
---|
154 | } while (next != cover);
|
---|
155 | } else {
|
---|
156 | double bound = -1;
|
---|
157 | double[] boundaries = new double[coverIndex];
|
---|
158 | double[] noBoundaries = new double[coverIndex];
|
---|
159 | int boundIdx = 0;
|
---|
160 | int noBoundIdx = 0;
|
---|
161 |
|
---|
162 | do {
|
---|
163 | for (int i = 0; i < coverIndex; i++) {
|
---|
164 | int contained = ContainesBoundary(front[i], regionLow, split);
|
---|
165 | if (contained == 0) boundaries[boundIdx++] = front[i][split];
|
---|
166 | else if (contained == 1) noBoundaries[noBoundIdx++] = front[i][split];
|
---|
167 | }
|
---|
168 | if (boundIdx > 0) bound = GetMedian(boundaries, boundIdx);
|
---|
169 | else if (noBoundIdx > sqrtNoPoints) bound = GetMedian(noBoundaries, noBoundIdx);
|
---|
170 | else split++;
|
---|
171 | } while (bound == -1.0);
|
---|
172 |
|
---|
173 | List<double[]> pointsChildLow, pointsChildUp;
|
---|
174 | pointsChildLow = new List<double[]>();
|
---|
175 | pointsChildUp = new List<double[]>();
|
---|
176 | double[] regionUpC = new double[regionUp.Length];
|
---|
177 | for (int j = 0; j < regionUpC.Length; j++) regionUpC[j] = regionUp[j];
|
---|
178 | double[] regionLowC = new double[regionLow.Length];
|
---|
179 | for (int j = 0; j < regionLowC.Length; j++) regionLowC[j] = regionLow[j];
|
---|
180 |
|
---|
181 | for (int i = 0; i < coverIndex; i++) {
|
---|
182 | if (PartCovers(front[i], regionUpC, objectives)) pointsChildUp.Add(front[i]);
|
---|
183 | if (PartCovers(front[i], regionUp, objectives)) pointsChildLow.Add(front[i]);
|
---|
184 | }
|
---|
185 | //this could/should be done in Parallel
|
---|
186 |
|
---|
187 | if (pointsChildUp.Count > 0) result += Stream(regionLow, regionUpC, pointsChildUp, split, cover, sqrtNoPoints, objectives);
|
---|
188 | if (pointsChildLow.Count > 0) result += Stream(regionLowC, regionUp, pointsChildLow, split, cover, sqrtNoPoints, objectives);
|
---|
189 | }
|
---|
190 | return result;
|
---|
191 | }
|
---|
192 |
|
---|
193 | private static double GetMedian(double[] vector, int length) {
|
---|
194 | return vector.Take(length).Median();
|
---|
195 | }
|
---|
196 |
|
---|
197 | private static double ComputeTrellis(double[] regionLow, double[] regionUp, double[] trellis, int objectives) {
|
---|
198 | bool[] bs = new bool[objectives - 1];
|
---|
199 | for (int i = 0; i < bs.Length; i++) bs[i] = true;
|
---|
200 |
|
---|
201 | double result = 0;
|
---|
202 | uint noSummands = BinarayToInt(bs);
|
---|
203 | int oneCounter; double summand;
|
---|
204 | for (uint i = 1; i <= noSummands; i++) {
|
---|
205 | summand = 1;
|
---|
206 | IntToBinary(i, bs);
|
---|
207 | oneCounter = 0;
|
---|
208 | for (int j = 0; j < objectives - 1; j++) {
|
---|
209 | if (bs[j]) {
|
---|
210 | summand *= regionUp[j] - trellis[j];
|
---|
211 | oneCounter++;
|
---|
212 | } else {
|
---|
213 | summand *= regionUp[j] - regionLow[j];
|
---|
214 | }
|
---|
215 | }
|
---|
216 | if (oneCounter % 2 == 0) result -= summand;
|
---|
217 | else result += summand;
|
---|
218 |
|
---|
219 | }
|
---|
220 | return result;
|
---|
221 | }
|
---|
222 |
|
---|
223 | private static void IntToBinary(uint i, bool[] bs) {
|
---|
224 | for (int j = 0; j < bs.Length; j++) bs[j] = false;
|
---|
225 | uint rest = i;
|
---|
226 | int idx = 0;
|
---|
227 | while (rest != 0) {
|
---|
228 | bs[idx] = rest % 2 == 1;
|
---|
229 | rest = rest / 2;
|
---|
230 | idx++;
|
---|
231 | }
|
---|
232 |
|
---|
233 | }
|
---|
234 |
|
---|
235 | private static uint BinarayToInt(bool[] bs) {
|
---|
236 | uint result = 0;
|
---|
237 | for (int i = 0; i < bs.Length; i++) {
|
---|
238 | result += bs[i] ? ((uint)1 << i) : 0;
|
---|
239 | }
|
---|
240 | return result;
|
---|
241 | }
|
---|
242 |
|
---|
243 | private static int IsPile(double[] cuboid, double[] regionLow, double[] regionUp, int objectives) {
|
---|
244 | int pile = cuboid.Length;
|
---|
245 | for (int i = 0; i < objectives - 1; i++) {
|
---|
246 | if (cuboid[i] > regionLow[i]) {
|
---|
247 | if (pile != objectives) return 1;
|
---|
248 | pile = i;
|
---|
249 | }
|
---|
250 | }
|
---|
251 | return pile;
|
---|
252 | }
|
---|
253 |
|
---|
254 | private static double GetMeasure(double[] regionLow, double[] regionUp, int objectives) {
|
---|
255 | double volume = 1;
|
---|
256 | for (int i = 0; i < objectives - 1; i++) {
|
---|
257 | volume *= (regionUp[i] - regionLow[i]);
|
---|
258 | }
|
---|
259 | return volume;
|
---|
260 | }
|
---|
261 |
|
---|
262 | private static int ContainesBoundary(double[] cub, double[] regionLow, int split) {
|
---|
263 | if (regionLow[split] >= cub[split]) return -1;
|
---|
264 | else {
|
---|
265 | for (int j = 0; j < split; j++) {
|
---|
266 | if (regionLow[j] < cub[j]) return 1;
|
---|
267 | }
|
---|
268 | }
|
---|
269 | return 0;
|
---|
270 | }
|
---|
271 |
|
---|
272 | private static bool PartCovers(double[] v, double[] regionUp, int objectives) {
|
---|
273 | for (int i = 0; i < objectives - 1; i++) {
|
---|
274 | if (v[i] >= regionUp[i]) return false;
|
---|
275 | }
|
---|
276 | return true;
|
---|
277 | }
|
---|
278 |
|
---|
279 | private static bool Covers(double[] v, double[] regionLow, int objectives) {
|
---|
280 | for (int i = 0; i < objectives - 1; i++) {
|
---|
281 | if (v[i] > regionLow[i]) return false;
|
---|
282 | }
|
---|
283 | return true;
|
---|
284 | }
|
---|
285 |
|
---|
286 |
|
---|
287 | }
|
---|
288 | }
|
---|
289 |
|
---|