1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2018 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Linq;
|
---|
24 | using HeuristicLab.Common;
|
---|
25 | using HeuristicLab.Core;
|
---|
26 | using HeuristicLab.Data;
|
---|
27 | using HeuristicLab.Encodings.PermutationEncoding;
|
---|
28 | using HeuristicLab.Optimization;
|
---|
29 | using HeuristicLab.Parameters;
|
---|
30 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
31 | using HeuristicLab.Problems.Instances;
|
---|
32 |
|
---|
33 | namespace HeuristicLab.Problems.PermutationProblems {
|
---|
34 | [Item("Linear Ordering Problem (LOP)", "Represents a Linear Ordering Problem")]
|
---|
35 | [Creatable(CreatableAttribute.Categories.CombinatorialProblems)]
|
---|
36 | [StorableClass]
|
---|
37 | public sealed class LinearOrderingProblem : SingleObjectiveBasicProblem<PermutationEncoding>, IProblemInstanceConsumer<LOPData>, IProblemInstanceExporter<LOPData>, IStorableContent {
|
---|
38 | private static readonly LOPData DefaultInstance = new LOPData() {
|
---|
39 | Name = "Linaer Ordering Problem (LOP)",
|
---|
40 | Description = "The default instance of the LOP in HeuristicLab",
|
---|
41 | Dimension = 4,
|
---|
42 | Matrix = new double[,] {
|
---|
43 | {0 ,3, 6 ,6},
|
---|
44 | {2 ,0, 8 ,4},
|
---|
45 | {4 ,2, 0 ,4},
|
---|
46 | {5 ,3, 8 ,0}
|
---|
47 | }
|
---|
48 | };
|
---|
49 |
|
---|
50 | public OptionalValueParameter<Permutation> BestKnownSolutionParameter
|
---|
51 | {
|
---|
52 | get { return (OptionalValueParameter<Permutation>)Parameters["BestKnownSolution"]; }
|
---|
53 | }
|
---|
54 | public Permutation BestKnownSolution
|
---|
55 | {
|
---|
56 | get { return BestKnownSolutionParameter.Value; }
|
---|
57 | set
|
---|
58 | {
|
---|
59 | BestKnownSolutionParameter.Value = value;
|
---|
60 | }
|
---|
61 | }
|
---|
62 |
|
---|
63 | public ValueParameter<DoubleMatrix> MatrixParameter
|
---|
64 | {
|
---|
65 | get { return (ValueParameter<DoubleMatrix>)Parameters["Matrix"]; }
|
---|
66 | }
|
---|
67 | public DoubleMatrix Matrix
|
---|
68 | {
|
---|
69 | get { return MatrixParameter.Value; }
|
---|
70 | set { MatrixParameter.Value = value; }
|
---|
71 | }
|
---|
72 |
|
---|
73 | public override bool Maximization { get { return true; } }
|
---|
74 |
|
---|
75 | [StorableConstructor]
|
---|
76 | private LinearOrderingProblem(bool deserializing) : base(deserializing) { }
|
---|
77 | private LinearOrderingProblem(LinearOrderingProblem original, Cloner cloner) : base(original, cloner) { }
|
---|
78 | public LinearOrderingProblem() {
|
---|
79 | Parameters.Add(new OptionalValueParameter<Permutation>("BestKnownSolution", "The best known solution of this LOP instance."));
|
---|
80 | Parameters.Add(new ValueParameter<DoubleMatrix>("Matrix", "The matrix which contains the corresponding LOP-values"));
|
---|
81 |
|
---|
82 | Load(DefaultInstance);
|
---|
83 | EvaluatorParameter.GetsCollected = false;
|
---|
84 | EvaluatorParameter.Hidden = true;
|
---|
85 |
|
---|
86 | Evaluator.QualityParameter.ActualName = "Superdiagonal";
|
---|
87 | }
|
---|
88 |
|
---|
89 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
90 | return new LinearOrderingProblem(this, cloner);
|
---|
91 | }
|
---|
92 |
|
---|
93 | public void Load(LOPData data) {
|
---|
94 | if (data.Matrix.GetLength(0) != data.Matrix.GetLength(1)) {
|
---|
95 | throw new ArgumentException("Matrix must be square");
|
---|
96 | }
|
---|
97 | if (data.BestKnownQuality.HasValue) {
|
---|
98 | BestKnownQuality = data.BestKnownQuality.Value;
|
---|
99 | }
|
---|
100 | Name = data.Name;
|
---|
101 | Description = data.Description;
|
---|
102 | Matrix = new DoubleMatrix(data.Matrix);
|
---|
103 | Encoding.Length = Matrix.Columns;
|
---|
104 |
|
---|
105 | if (data.BestKnownPermutation != null) {
|
---|
106 | int[] permut = data.BestKnownPermutation;
|
---|
107 | //Clean up if the first index = 1
|
---|
108 | if (!permut.Contains(0)) { permut = permut.Select(v => v - 1).ToArray(); }
|
---|
109 |
|
---|
110 | BestKnownSolution = new Permutation(PermutationTypes.Absolute, permut);
|
---|
111 | BestKnownQuality = Evaluate(new Permutation(PermutationTypes.Absolute, permut), Matrix);
|
---|
112 | }
|
---|
113 | }
|
---|
114 |
|
---|
115 | public LOPData Export() {
|
---|
116 | var result = new LOPData {
|
---|
117 | Name = Name,
|
---|
118 | Description = Description,
|
---|
119 | BestKnownQuality = BestKnownQuality,
|
---|
120 | BestKnownPermutation = BestKnownSolution.ToArray(),
|
---|
121 | Dimension = Matrix.Rows,
|
---|
122 | Matrix = Matrix.CloneAsMatrix()
|
---|
123 | };
|
---|
124 |
|
---|
125 | return result;
|
---|
126 | }
|
---|
127 |
|
---|
128 | public override double Evaluate(Individual individual, IRandom random) {
|
---|
129 | return Evaluate(individual.Permutation(), Matrix);
|
---|
130 | }
|
---|
131 | private double Evaluate(Permutation permutation, DoubleMatrix matrix) {
|
---|
132 | double sum = 0;
|
---|
133 | for (int i = 1; i < matrix.Columns; i++) {
|
---|
134 | for (int j = 0; j < i; j++) {
|
---|
135 | sum += matrix[permutation[j], permutation[i]];
|
---|
136 | }
|
---|
137 | }
|
---|
138 |
|
---|
139 | return sum;
|
---|
140 | }
|
---|
141 | }
|
---|
142 | }
|
---|