1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2019 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using HeuristicLab.Common;
|
---|
23 | using HeuristicLab.Core;
|
---|
24 | using HEAL.Attic;
|
---|
25 | using HeuristicLab.Problems.DataAnalysis;
|
---|
26 | using HeuristicLab.Optimization;
|
---|
27 | using HeuristicLab.Data;
|
---|
28 |
|
---|
29 | namespace HeuristicLab.Algorithms.DataAnalysis {
|
---|
30 | /// <summary>
|
---|
31 | /// Represents a k-Means clustering solution for a clustering problem which can be visualized in the GUI.
|
---|
32 | /// </summary>
|
---|
33 | [Item("k-Means clustering solution", "Represents a k-Means solution for a clustering problem which can be visualized in the GUI.")]
|
---|
34 | [StorableType("E46AD906-04C4-4BEB-977D-BBC80E97C874")]
|
---|
35 | public sealed class KMeansClusteringSolution : ClusteringSolution {
|
---|
36 | private const string TrainingIntraClusterSumOfSquaresResultName = "Intra-cluster sum of squares (training)";
|
---|
37 | private const string TestIntraClusterSumOfSquaresResultName = "Intra-cluster sum of squares (test)";
|
---|
38 | public new KMeansClusteringModel Model {
|
---|
39 | get { return (KMeansClusteringModel)base.Model; }
|
---|
40 | set { base.Model = value; }
|
---|
41 | }
|
---|
42 |
|
---|
43 | [StorableConstructor]
|
---|
44 | private KMeansClusteringSolution(StorableConstructorFlag _) : base(_) { }
|
---|
45 | private KMeansClusteringSolution(KMeansClusteringSolution original, Cloner cloner)
|
---|
46 | : base(original, cloner) {
|
---|
47 | }
|
---|
48 | public KMeansClusteringSolution(KMeansClusteringModel model, IClusteringProblemData problemData)
|
---|
49 | : base(model, problemData) {
|
---|
50 | double trainingIntraClusterSumOfSquares = KMeansClusteringUtil.CalculateIntraClusterSumOfSquares(model, problemData.Dataset, problemData.TrainingIndices);
|
---|
51 | double testIntraClusterSumOfSquares = KMeansClusteringUtil.CalculateIntraClusterSumOfSquares(model, problemData.Dataset, problemData.TestIndices);
|
---|
52 | this.Add(new Result(TrainingIntraClusterSumOfSquaresResultName, "The sum of squared distances of points of the training partition to the cluster center (is minimized by k-Means).", new DoubleValue(trainingIntraClusterSumOfSquares)));
|
---|
53 | this.Add(new Result(TestIntraClusterSumOfSquaresResultName, "The sum of squared distances of points of the test partition to the cluster center (is minimized by k-Means).", new DoubleValue(testIntraClusterSumOfSquares)));
|
---|
54 | }
|
---|
55 |
|
---|
56 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
57 | return new KMeansClusteringSolution(this, cloner);
|
---|
58 | }
|
---|
59 | }
|
---|
60 | }
|
---|