[5651] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
[16842] | 3 | * Copyright (C) 2002-2019 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
[5651] | 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using HeuristicLab.Common;
|
---|
| 23 | using HeuristicLab.Core;
|
---|
[16842] | 24 | using HEAL.Attic;
|
---|
[5651] | 25 | using HeuristicLab.Problems.DataAnalysis;
|
---|
| 26 | using HeuristicLab.Optimization;
|
---|
| 27 | using HeuristicLab.Data;
|
---|
| 28 |
|
---|
| 29 | namespace HeuristicLab.Algorithms.DataAnalysis {
|
---|
| 30 | /// <summary>
|
---|
| 31 | /// Represents a k-Means clustering solution for a clustering problem which can be visualized in the GUI.
|
---|
| 32 | /// </summary>
|
---|
| 33 | [Item("k-Means clustering solution", "Represents a k-Means solution for a clustering problem which can be visualized in the GUI.")]
|
---|
[16842] | 34 | [StorableType("E46AD906-04C4-4BEB-977D-BBC80E97C874")]
|
---|
[5651] | 35 | public sealed class KMeansClusteringSolution : ClusteringSolution {
|
---|
| 36 | private const string TrainingIntraClusterSumOfSquaresResultName = "Intra-cluster sum of squares (training)";
|
---|
| 37 | private const string TestIntraClusterSumOfSquaresResultName = "Intra-cluster sum of squares (test)";
|
---|
| 38 | public new KMeansClusteringModel Model {
|
---|
| 39 | get { return (KMeansClusteringModel)base.Model; }
|
---|
[5717] | 40 | set { base.Model = value; }
|
---|
[5651] | 41 | }
|
---|
| 42 |
|
---|
| 43 | [StorableConstructor]
|
---|
[16842] | 44 | private KMeansClusteringSolution(StorableConstructorFlag _) : base(_) { }
|
---|
[5651] | 45 | private KMeansClusteringSolution(KMeansClusteringSolution original, Cloner cloner)
|
---|
| 46 | : base(original, cloner) {
|
---|
| 47 | }
|
---|
| 48 | public KMeansClusteringSolution(KMeansClusteringModel model, IClusteringProblemData problemData)
|
---|
| 49 | : base(model, problemData) {
|
---|
[8139] | 50 | double trainingIntraClusterSumOfSquares = KMeansClusteringUtil.CalculateIntraClusterSumOfSquares(model, problemData.Dataset, problemData.TrainingIndices);
|
---|
| 51 | double testIntraClusterSumOfSquares = KMeansClusteringUtil.CalculateIntraClusterSumOfSquares(model, problemData.Dataset, problemData.TestIndices);
|
---|
[5651] | 52 | this.Add(new Result(TrainingIntraClusterSumOfSquaresResultName, "The sum of squared distances of points of the training partition to the cluster center (is minimized by k-Means).", new DoubleValue(trainingIntraClusterSumOfSquares)));
|
---|
| 53 | this.Add(new Result(TestIntraClusterSumOfSquaresResultName, "The sum of squared distances of points of the test partition to the cluster center (is minimized by k-Means).", new DoubleValue(testIntraClusterSumOfSquares)));
|
---|
| 54 | }
|
---|
| 55 |
|
---|
| 56 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
| 57 | return new KMeansClusteringSolution(this, cloner);
|
---|
| 58 | }
|
---|
| 59 | }
|
---|
| 60 | }
|
---|