1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2017 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Linq;
|
---|
25 | using System.Threading;
|
---|
26 | using HeuristicLab.Common;
|
---|
27 | using HeuristicLab.Core;
|
---|
28 | using HeuristicLab.Data;
|
---|
29 | using HeuristicLab.Optimization;
|
---|
30 | using HeuristicLab.Problems.DataAnalysis;
|
---|
31 | using HEAL.Attic;
|
---|
32 |
|
---|
33 | namespace HeuristicLab.Algorithms.DataAnalysis {
|
---|
34 | [StorableType("7B4D9AE9-0456-4029-80A6-CCB5E33CE356")]
|
---|
35 | public class RegressionRuleSetModel : RegressionModel, IM5Model {
|
---|
36 | private const string NumRulesResultName = "Number of rules";
|
---|
37 | private const string CoveredInstancesResultName = "Covered instances";
|
---|
38 | public const string RuleSetStateVariableName = "RuleSetState";
|
---|
39 |
|
---|
40 | #region Properties
|
---|
41 | [Storable]
|
---|
42 | internal List<RegressionRuleModel> Rules { get; private set; }
|
---|
43 | #endregion
|
---|
44 |
|
---|
45 | #region HLConstructors & Cloning
|
---|
46 | [StorableConstructor]
|
---|
47 | protected RegressionRuleSetModel(StorableConstructorFlag _) : base(_) { }
|
---|
48 | protected RegressionRuleSetModel(RegressionRuleSetModel original, Cloner cloner) : base(original, cloner) {
|
---|
49 | if (original.Rules != null) Rules = original.Rules.Select(cloner.Clone).ToList();
|
---|
50 | }
|
---|
51 | protected RegressionRuleSetModel(string targetVariable) : base(targetVariable) { }
|
---|
52 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
53 | return new RegressionRuleSetModel(this, cloner);
|
---|
54 | }
|
---|
55 | #endregion
|
---|
56 |
|
---|
57 | internal static RegressionRuleSetModel CreateRuleModel(string targetAttr, RegressionTreeParameters regressionTreeParams) {
|
---|
58 | return regressionTreeParams.LeafModel.ProvidesConfidence ? new ConfidenceRegressionRuleSetModel(targetAttr) : new RegressionRuleSetModel(targetAttr);
|
---|
59 | }
|
---|
60 |
|
---|
61 | #region RegressionModel
|
---|
62 | public override IEnumerable<string> VariablesUsedForPrediction {
|
---|
63 | get {
|
---|
64 | var f = Rules.FirstOrDefault();
|
---|
65 | return f != null ? (f.VariablesUsedForPrediction ?? new List<string>()) : new List<string>();
|
---|
66 | }
|
---|
67 | }
|
---|
68 | public override IEnumerable<double> GetEstimatedValues(IDataset dataset, IEnumerable<int> rows) {
|
---|
69 | if (Rules == null) throw new NotSupportedException("The model has not been built yet");
|
---|
70 | return rows.Select(row => GetEstimatedValue(dataset, row));
|
---|
71 | }
|
---|
72 | public override IRegressionSolution CreateRegressionSolution(IRegressionProblemData problemData) {
|
---|
73 | return new RegressionSolution(this, problemData);
|
---|
74 | }
|
---|
75 | #endregion
|
---|
76 |
|
---|
77 | #region IM5Model
|
---|
78 | public void Build(IReadOnlyList<int> trainingRows, IReadOnlyList<int> pruningRows, IScope stateScope, ResultCollection results, CancellationToken cancellationToken) {
|
---|
79 | var regressionTreeParams = (RegressionTreeParameters)stateScope.Variables[M5Regression.RegressionTreeParameterVariableName].Value;
|
---|
80 | var ruleSetState = (RuleSetState)stateScope.Variables[RuleSetStateVariableName].Value;
|
---|
81 |
|
---|
82 | if (ruleSetState.Code <= 0) {
|
---|
83 | ruleSetState.Rules.Clear();
|
---|
84 | ruleSetState.TrainingRows = trainingRows;
|
---|
85 | ruleSetState.PruningRows = pruningRows;
|
---|
86 | ruleSetState.Code = 1;
|
---|
87 | }
|
---|
88 |
|
---|
89 | do {
|
---|
90 | var tempRule = RegressionRuleModel.CreateRuleModel(regressionTreeParams.TargetVariable, regressionTreeParams);
|
---|
91 | cancellationToken.ThrowIfCancellationRequested();
|
---|
92 |
|
---|
93 | if (!results.ContainsKey(NumRulesResultName)) results.Add(new Result(NumRulesResultName, new IntValue(0)));
|
---|
94 | if (!results.ContainsKey(CoveredInstancesResultName)) results.Add(new Result(CoveredInstancesResultName, new IntValue(0)));
|
---|
95 |
|
---|
96 | var t1 = ruleSetState.TrainingRows.Count;
|
---|
97 | tempRule.Build(ruleSetState.TrainingRows, ruleSetState.PruningRows, stateScope, results, cancellationToken);
|
---|
98 | ruleSetState.TrainingRows = ruleSetState.TrainingRows.Where(i => !tempRule.Covers(regressionTreeParams.Data, i)).ToArray();
|
---|
99 | ruleSetState.PruningRows = ruleSetState.PruningRows.Where(i => !tempRule.Covers(regressionTreeParams.Data, i)).ToArray();
|
---|
100 | ruleSetState.Rules.Add(tempRule);
|
---|
101 | ((IntValue)results[NumRulesResultName].Value).Value++;
|
---|
102 | ((IntValue)results[CoveredInstancesResultName].Value).Value += t1 - ruleSetState.TrainingRows.Count;
|
---|
103 | }
|
---|
104 | while (ruleSetState.TrainingRows.Count > 0);
|
---|
105 | Rules = ruleSetState.Rules;
|
---|
106 | }
|
---|
107 | public void Update(IReadOnlyList<int> rows, IScope stateScope, CancellationToken cancellationToken) {
|
---|
108 | foreach (var rule in Rules) rule.Update(rows, stateScope, cancellationToken);
|
---|
109 | }
|
---|
110 | public static void Initialize(IScope stateScope) {
|
---|
111 | stateScope.Variables.Add(new Variable(RuleSetStateVariableName, new RuleSetState()));
|
---|
112 | }
|
---|
113 | #endregion
|
---|
114 |
|
---|
115 | #region Helpers
|
---|
116 | private double GetEstimatedValue(IDataset dataset, int row) {
|
---|
117 | foreach (var rule in Rules) {
|
---|
118 | if (rule.Covers(dataset, row))
|
---|
119 | return rule.GetEstimatedValues(dataset, row.ToEnumerable()).Single();
|
---|
120 | }
|
---|
121 | throw new ArgumentException("Instance is not covered by any rule");
|
---|
122 | }
|
---|
123 | #endregion
|
---|
124 |
|
---|
125 | [StorableType("E114F3C9-3C1F-443D-8270-0E10CE12F2A0")]
|
---|
126 | public class RuleSetState : Item {
|
---|
127 | [Storable]
|
---|
128 | public List<RegressionRuleModel> Rules = new List<RegressionRuleModel>();
|
---|
129 | [Storable]
|
---|
130 | public IReadOnlyList<int> TrainingRows = new List<int>();
|
---|
131 | [Storable]
|
---|
132 | public IReadOnlyList<int> PruningRows = new List<int>();
|
---|
133 |
|
---|
134 | //State.Code values denote the current action (for pausing)
|
---|
135 | //0...nothing has been done;
|
---|
136 | //1...splitting nodes;
|
---|
137 | [Storable]
|
---|
138 | public int Code = 0;
|
---|
139 |
|
---|
140 | #region HLConstructors & Cloning
|
---|
141 | [StorableConstructor]
|
---|
142 | protected RuleSetState(StorableConstructorFlag _) : base(_) { }
|
---|
143 | protected RuleSetState(RuleSetState original, Cloner cloner) : base(original, cloner) {
|
---|
144 | Rules = original.Rules.Select(cloner.Clone).ToList();
|
---|
145 | TrainingRows = original.TrainingRows.ToList();
|
---|
146 | PruningRows = original.PruningRows.ToList();
|
---|
147 |
|
---|
148 | Code = original.Code;
|
---|
149 | }
|
---|
150 | public RuleSetState() { }
|
---|
151 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
152 | return new RuleSetState(this, cloner);
|
---|
153 | }
|
---|
154 | #endregion
|
---|
155 | }
|
---|
156 |
|
---|
157 | [StorableType("52E7992B-94CC-4960-AA82-1A399BE735C6")]
|
---|
158 | private sealed class ConfidenceRegressionRuleSetModel : RegressionRuleSetModel, IConfidenceRegressionModel {
|
---|
159 | #region HLConstructors & Cloning
|
---|
160 | [StorableConstructor]
|
---|
161 | private ConfidenceRegressionRuleSetModel(StorableConstructorFlag _) : base(_) { }
|
---|
162 | private ConfidenceRegressionRuleSetModel(ConfidenceRegressionRuleSetModel original, Cloner cloner) : base(original, cloner) { }
|
---|
163 | public ConfidenceRegressionRuleSetModel(string targetVariable) : base(targetVariable) { }
|
---|
164 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
165 | return new ConfidenceRegressionRuleSetModel(this, cloner);
|
---|
166 | }
|
---|
167 | #endregion
|
---|
168 |
|
---|
169 | #region IConfidenceRegressionModel
|
---|
170 | public IEnumerable<double> GetEstimatedVariances(IDataset dataset, IEnumerable<int> rows) {
|
---|
171 | if (Rules == null) throw new NotSupportedException("The model has not been built yet");
|
---|
172 | return rows.Select(row => GetEstimatedVariance(dataset, row));
|
---|
173 | }
|
---|
174 | public override IRegressionSolution CreateRegressionSolution(IRegressionProblemData problemData) {
|
---|
175 | return new ConfidenceRegressionSolution(this, problemData);
|
---|
176 | }
|
---|
177 | private double GetEstimatedVariance(IDataset dataset, int row) {
|
---|
178 | foreach (var rule in Rules) {
|
---|
179 | if (rule.Covers(dataset, row)) return ((IConfidenceRegressionModel)rule).GetEstimatedVariances(dataset, row.ToEnumerable()).Single();
|
---|
180 | }
|
---|
181 | throw new ArgumentException("Instance is not covered by any rule");
|
---|
182 | }
|
---|
183 | #endregion
|
---|
184 | }
|
---|
185 | }
|
---|
186 | } |
---|