1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2017 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Linq;
|
---|
25 | using System.Text;
|
---|
26 | using System.Threading;
|
---|
27 | using HeuristicLab.Common;
|
---|
28 | using HeuristicLab.Core;
|
---|
29 | using HeuristicLab.Optimization;
|
---|
30 | using HeuristicLab.Problems.DataAnalysis;
|
---|
31 | using HEAL.Attic;
|
---|
32 |
|
---|
33 | namespace HeuristicLab.Algorithms.DataAnalysis {
|
---|
34 | [StorableType("425AF262-A756-4E9A-B76F-4D2480BEA4FD")]
|
---|
35 | public class RegressionRuleModel : RegressionModel, IM5Model {
|
---|
36 | #region Properties
|
---|
37 | [Storable]
|
---|
38 | public string[] SplitAttributes { get; set; }
|
---|
39 | [Storable]
|
---|
40 | private double[] SplitValues { get; set; }
|
---|
41 | [Storable]
|
---|
42 | private Comparison[] Comparisons { get; set; }
|
---|
43 | [Storable]
|
---|
44 | private IRegressionModel RuleModel { get; set; }
|
---|
45 | [Storable]
|
---|
46 | private IReadOnlyList<string> variables;
|
---|
47 | #endregion
|
---|
48 |
|
---|
49 | #region HLConstructors
|
---|
50 | [StorableConstructor]
|
---|
51 | protected RegressionRuleModel(StorableConstructorFlag _) : base(_) { }
|
---|
52 | protected RegressionRuleModel(RegressionRuleModel original, Cloner cloner) : base(original, cloner) {
|
---|
53 | if (original.SplitAttributes != null) SplitAttributes = original.SplitAttributes.ToArray();
|
---|
54 | if (original.SplitValues != null) SplitValues = original.SplitValues.ToArray();
|
---|
55 | if (original.Comparisons != null) Comparisons = original.Comparisons.ToArray();
|
---|
56 | RuleModel = cloner.Clone(original.RuleModel);
|
---|
57 | if (original.variables != null) variables = original.variables.ToList();
|
---|
58 | }
|
---|
59 | private RegressionRuleModel(string target) : base(target) { }
|
---|
60 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
61 | return new RegressionRuleModel(this, cloner);
|
---|
62 | }
|
---|
63 | #endregion
|
---|
64 |
|
---|
65 | internal static RegressionRuleModel CreateRuleModel(string target, RegressionTreeParameters regressionTreeParams) {
|
---|
66 | return regressionTreeParams.LeafModel.ProvidesConfidence ? new ConfidenceRegressionRuleModel(target) : new RegressionRuleModel(target);
|
---|
67 | }
|
---|
68 |
|
---|
69 | #region IRegressionModel
|
---|
70 | public override IEnumerable<string> VariablesUsedForPrediction {
|
---|
71 | get { return variables; }
|
---|
72 | }
|
---|
73 |
|
---|
74 | public override IEnumerable<double> GetEstimatedValues(IDataset dataset, IEnumerable<int> rows) {
|
---|
75 | if (RuleModel == null) throw new NotSupportedException("The model has not been built correctly");
|
---|
76 | return RuleModel.GetEstimatedValues(dataset, rows);
|
---|
77 | }
|
---|
78 |
|
---|
79 | public override IRegressionSolution CreateRegressionSolution(IRegressionProblemData problemData) {
|
---|
80 | return new RegressionSolution(this, problemData);
|
---|
81 | }
|
---|
82 | #endregion
|
---|
83 |
|
---|
84 | public void Build(IReadOnlyList<int> trainingRows, IReadOnlyList<int> pruningRows, IScope statescope, ResultCollection results, CancellationToken cancellationToken) {
|
---|
85 | var regressionTreeParams = (RegressionTreeParameters)statescope.Variables[M5Regression.RegressionTreeParameterVariableName].Value;
|
---|
86 | variables = regressionTreeParams.AllowedInputVariables.ToList();
|
---|
87 |
|
---|
88 | //build tree and select node with maximum coverage
|
---|
89 | var tree = RegressionNodeTreeModel.CreateTreeModel(regressionTreeParams.TargetVariable, regressionTreeParams);
|
---|
90 | tree.BuildModel(trainingRows, pruningRows, statescope, results, cancellationToken);
|
---|
91 | var nodeModel = tree.Root.EnumerateNodes().Where(x => x.IsLeaf).MaxItems(x => x.NumSamples).First();
|
---|
92 |
|
---|
93 | var satts = new List<string>();
|
---|
94 | var svals = new List<double>();
|
---|
95 | var reops = new List<Comparison>();
|
---|
96 |
|
---|
97 | //extract splits
|
---|
98 | for (var temp = nodeModel; temp.Parent != null; temp = temp.Parent) {
|
---|
99 | satts.Add(temp.Parent.SplitAttribute);
|
---|
100 | svals.Add(temp.Parent.SplitValue);
|
---|
101 | reops.Add(temp.Parent.Left == temp ? Comparison.LessEqual : Comparison.Greater);
|
---|
102 | }
|
---|
103 | Comparisons = reops.ToArray();
|
---|
104 | SplitAttributes = satts.ToArray();
|
---|
105 | SplitValues = svals.ToArray();
|
---|
106 | int np;
|
---|
107 | RuleModel = regressionTreeParams.LeafModel.BuildModel(trainingRows.Union(pruningRows).Where(r => Covers(regressionTreeParams.Data, r)).ToArray(), regressionTreeParams, cancellationToken, out np);
|
---|
108 | }
|
---|
109 |
|
---|
110 | public void Update(IReadOnlyList<int> rows, IScope statescope, CancellationToken cancellationToken) {
|
---|
111 | var regressionTreeParams = (RegressionTreeParameters)statescope.Variables[M5Regression.RegressionTreeParameterVariableName].Value;
|
---|
112 | int np;
|
---|
113 | RuleModel = regressionTreeParams.LeafModel.BuildModel(rows, regressionTreeParams, cancellationToken, out np);
|
---|
114 | }
|
---|
115 |
|
---|
116 | public bool Covers(IDataset dataset, int row) {
|
---|
117 | return !SplitAttributes.Where((t, i) => !Comparisons[i].Compare(dataset.GetDoubleValue(t, row), SplitValues[i])).Any();
|
---|
118 | }
|
---|
119 |
|
---|
120 | public string ToCompactString() {
|
---|
121 | var mins = new Dictionary<string, double>();
|
---|
122 | var maxs = new Dictionary<string, double>();
|
---|
123 | for (var i = 0; i < SplitAttributes.Length; i++) {
|
---|
124 | var n = SplitAttributes[i];
|
---|
125 | var v = SplitValues[i];
|
---|
126 | if (!mins.ContainsKey(n)) mins.Add(n, double.NegativeInfinity);
|
---|
127 | if (!maxs.ContainsKey(n)) maxs.Add(n, double.PositiveInfinity);
|
---|
128 | if (Comparisons[i] == Comparison.LessEqual) maxs[n] = Math.Min(maxs[n], v);
|
---|
129 | else mins[n] = Math.Max(mins[n], v);
|
---|
130 | }
|
---|
131 | if (maxs.Count == 0) return "";
|
---|
132 | var s = new StringBuilder();
|
---|
133 | foreach (var key in maxs.Keys)
|
---|
134 | s.Append(string.Format("{0} ∈ [{1:e2}; {2:e2}] && ", key, mins[key], maxs[key]));
|
---|
135 | s.Remove(s.Length - 4, 4);
|
---|
136 | return s.ToString();
|
---|
137 | }
|
---|
138 |
|
---|
139 | [StorableType("7302AA30-9F58-42F3-BF6A-ECF1536508AB")]
|
---|
140 | private sealed class ConfidenceRegressionRuleModel : RegressionRuleModel, IConfidenceRegressionModel {
|
---|
141 | #region HLConstructors
|
---|
142 | [StorableConstructor]
|
---|
143 | private ConfidenceRegressionRuleModel(StorableConstructorFlag _) : base(_) { }
|
---|
144 | private ConfidenceRegressionRuleModel(ConfidenceRegressionRuleModel original, Cloner cloner) : base(original, cloner) { }
|
---|
145 | public ConfidenceRegressionRuleModel(string targetAttr) : base(targetAttr) { }
|
---|
146 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
147 | return new ConfidenceRegressionRuleModel(this, cloner);
|
---|
148 | }
|
---|
149 | #endregion
|
---|
150 |
|
---|
151 | public IEnumerable<double> GetEstimatedVariances(IDataset dataset, IEnumerable<int> rows) {
|
---|
152 | return ((IConfidenceRegressionModel)RuleModel).GetEstimatedVariances(dataset, rows);
|
---|
153 | }
|
---|
154 |
|
---|
155 | public override IRegressionSolution CreateRegressionSolution(IRegressionProblemData problemData) {
|
---|
156 | return new ConfidenceRegressionSolution(this, problemData);
|
---|
157 | }
|
---|
158 | }
|
---|
159 | }
|
---|
160 |
|
---|
161 | [StorableType("152DECE4-2692-4D53-B290-974806ADCD72")]
|
---|
162 | internal enum Comparison {
|
---|
163 | LessEqual,
|
---|
164 | Greater
|
---|
165 | }
|
---|
166 |
|
---|
167 | internal static class ComparisonExtentions {
|
---|
168 | public static bool Compare(this Comparison op, double x, double y) {
|
---|
169 | switch (op) {
|
---|
170 | case Comparison.Greater:
|
---|
171 | return x > y;
|
---|
172 | case Comparison.LessEqual:
|
---|
173 | return x <= y;
|
---|
174 | default:
|
---|
175 | throw new ArgumentOutOfRangeException(op.ToString(), op, null);
|
---|
176 | }
|
---|
177 | }
|
---|
178 | }
|
---|
179 | } |
---|