1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2017 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System.Collections.Generic;
|
---|
23 | using System.Linq;
|
---|
24 | using HeuristicLab.Analysis;
|
---|
25 | using HeuristicLab.Data;
|
---|
26 | using HeuristicLab.Optimization;
|
---|
27 | using HeuristicLab.Problems.DataAnalysis;
|
---|
28 |
|
---|
29 | namespace HeuristicLab.Algorithms.DataAnalysis {
|
---|
30 | internal static class M5Analyzer {
|
---|
31 | private const string ConditionResultName = "Condition";
|
---|
32 | private const string CoverResultName = "Covered Instances";
|
---|
33 | private const string CoverageDiagramResultName = "Coverage";
|
---|
34 | private const string RuleModelResultName = "RuleModel";
|
---|
35 |
|
---|
36 | public static Dictionary<string, int> GetRuleVariableFrequences(M5RuleSetModel ruleSetModel) {
|
---|
37 | var res = ruleSetModel.VariablesUsedForPrediction.ToDictionary(x => x, x => 0);
|
---|
38 | foreach (var rule in ruleSetModel.Rules)
|
---|
39 | foreach (var att in rule.SplitAttributes)
|
---|
40 | res[att]++;
|
---|
41 | return res;
|
---|
42 | }
|
---|
43 |
|
---|
44 | public static Dictionary<string, int> GetTreeVariableFrequences(M5TreeModel treeModel) {
|
---|
45 | var res = treeModel.VariablesUsedForPrediction.ToDictionary(x => x, x => 0);
|
---|
46 | var root = treeModel.Root;
|
---|
47 | foreach (var cur in root.EnumerateNodes().Where(x => !x.IsLeaf))
|
---|
48 | res[cur.SplitAttribute]++;
|
---|
49 | return res;
|
---|
50 | }
|
---|
51 |
|
---|
52 | public static Result CreateLeafDepthHistogram(M5TreeModel treeModel) {
|
---|
53 | var list = new List<int>();
|
---|
54 | GetLeafDepths(treeModel.Root, 0, list);
|
---|
55 | var row = new DataRow("Depths", "", list.Select(x => (double) x)) {
|
---|
56 | VisualProperties = {ChartType = DataRowVisualProperties.DataRowChartType.Histogram}
|
---|
57 | };
|
---|
58 | var hist = new DataTable("LeafDepths");
|
---|
59 | hist.Rows.Add(row);
|
---|
60 | return new Result(hist.Name, hist);
|
---|
61 | }
|
---|
62 |
|
---|
63 | public static Result CreateRulesResult(M5RuleSetModel ruleSetModel, IRegressionProblemData pd, string resultName, bool displayModels) {
|
---|
64 | var res = new ResultCollection();
|
---|
65 | var i = 0;
|
---|
66 | foreach (var rule in ruleSetModel.Rules)
|
---|
67 | res.Add(new Result("Rule" + i++, CreateRulesResult(rule, pd, displayModels, out pd)));
|
---|
68 | return new Result(resultName, res);
|
---|
69 | }
|
---|
70 |
|
---|
71 | public static IResult CreateCoverageDiagram(M5RuleSetModel setModel, IRegressionProblemData problemData) {
|
---|
72 | var res = new DataTable(CoverageDiagramResultName);
|
---|
73 | var training = CountCoverage(setModel, problemData.Dataset, problemData.TrainingIndices);
|
---|
74 | var test = CountCoverage(setModel, problemData.Dataset, problemData.TestIndices);
|
---|
75 | res.Rows.Add(new DataRow("Training", "", training));
|
---|
76 | res.Rows.Add(new DataRow("Test", "", test));
|
---|
77 |
|
---|
78 | foreach (var row in res.Rows)
|
---|
79 | row.VisualProperties.ChartType = DataRowVisualProperties.DataRowChartType.Columns;
|
---|
80 | res.VisualProperties.XAxisMaximumFixedValue = training.Count + 1;
|
---|
81 | res.VisualProperties.XAxisMaximumAuto = false;
|
---|
82 | res.VisualProperties.XAxisMinimumFixedValue = 0;
|
---|
83 | res.VisualProperties.XAxisMinimumAuto = false;
|
---|
84 | res.VisualProperties.XAxisTitle = "Rule";
|
---|
85 | res.VisualProperties.YAxisTitle = "Covered Instances";
|
---|
86 |
|
---|
87 | return new Result(CoverageDiagramResultName, res);
|
---|
88 | }
|
---|
89 |
|
---|
90 | private static void GetLeafDepths(M5NodeModel n, int depth, ICollection<int> res) {
|
---|
91 | if (n == null) return;
|
---|
92 | if (n.Left == null && n.Right == null) res.Add(depth);
|
---|
93 | else {
|
---|
94 | GetLeafDepths(n.Left, depth + 1, res);
|
---|
95 | GetLeafDepths(n.Right, depth + 1, res);
|
---|
96 | }
|
---|
97 | }
|
---|
98 |
|
---|
99 | private static ResultCollection CreateRulesResult(M5RuleModel m5RuleModel, IRegressionProblemData pd, bool displayModels, out IRegressionProblemData notCovered) {
|
---|
100 | var training = pd.TrainingIndices.Where(x => !m5RuleModel.Covers(pd.Dataset, x)).ToArray();
|
---|
101 | var test = pd.TestIndices.Where(x => !m5RuleModel.Covers(pd.Dataset, x)).ToArray();
|
---|
102 | var data = new Dataset(pd.Dataset.DoubleVariables, pd.Dataset.DoubleVariables.Select(v => pd.Dataset.GetDoubleValues(v, training.Concat(test)).ToArray()));
|
---|
103 | notCovered = new RegressionProblemData(data, pd.AllowedInputVariables, pd.TargetVariable);
|
---|
104 | notCovered.TestPartition.Start = notCovered.TrainingPartition.End = training.Length;
|
---|
105 | notCovered.TestPartition.End = training.Length + test.Length;
|
---|
106 |
|
---|
107 | var training2 = pd.TrainingIndices.Where(x => m5RuleModel.Covers(pd.Dataset, x)).ToArray();
|
---|
108 | var test2 = pd.TestIndices.Where(x => m5RuleModel.Covers(pd.Dataset, x)).ToArray();
|
---|
109 | var data2 = new Dataset(pd.Dataset.DoubleVariables, pd.Dataset.DoubleVariables.Select(v => pd.Dataset.GetDoubleValues(v, training2.Concat(test2)).ToArray()));
|
---|
110 | var covered = new RegressionProblemData(data2, pd.AllowedInputVariables, pd.TargetVariable);
|
---|
111 | covered.TestPartition.Start = covered.TrainingPartition.End = training2.Length;
|
---|
112 | covered.TestPartition.End = training2.Length + test2.Length;
|
---|
113 |
|
---|
114 | var res = new ResultCollection {
|
---|
115 | new Result(ConditionResultName, new StringValue(m5RuleModel.ToCompactString())),
|
---|
116 | new Result(CoverResultName, new IntValue(pd.TrainingIndices.Count() - training.Length))
|
---|
117 | };
|
---|
118 | if (displayModels) res.Add(new Result(RuleModelResultName, m5RuleModel.CreateRegressionSolution(covered)));
|
---|
119 | return res;
|
---|
120 | }
|
---|
121 |
|
---|
122 | private static IReadOnlyList<double> CountCoverage(M5RuleSetModel setModel, IDataset data, IEnumerable<int> rows) {
|
---|
123 | var rules = setModel.Rules.ToArray();
|
---|
124 | var res = new double[rules.Length];
|
---|
125 | foreach (int row in rows)
|
---|
126 | for (int i = 0; i < rules.Length; i++)
|
---|
127 | if (rules[i].Covers(data, row)) {
|
---|
128 | res[i]++;
|
---|
129 | break;
|
---|
130 | }
|
---|
131 | return res;
|
---|
132 | }
|
---|
133 | }
|
---|
134 | } |
---|