Free cookie consent management tool by TermsFeed Policy Generator

source: branches/2847_M5Regression/HeuristicLab.Algorithms.DataAnalysis/3.4/GaussianProcess/GaussianProcessRegression.cs @ 17189

Last change on this file since 17189 was 16842, checked in by gkronber, 6 years ago

#2847: merged r16565:16796 from trunk/HeuristicLab.Algorithms.DataAnalysis to branch

File size: 7.3 KB
RevLine 
[8323]1#region License Information
2/* HeuristicLab
[16842]3 * Copyright (C) 2002-2019 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
[8323]4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
[8371]22using System;
[9096]23using System.Linq;
[8323]24using HeuristicLab.Common;
25using HeuristicLab.Core;
[13205]26using HeuristicLab.Data;
[8323]27using HeuristicLab.Parameters;
[16842]28using HEAL.Attic;
[9096]29using HeuristicLab.PluginInfrastructure;
[8323]30using HeuristicLab.Problems.DataAnalysis;
31
[8371]32namespace HeuristicLab.Algorithms.DataAnalysis {
[8323]33  /// <summary>
34  ///Gaussian process regression data analysis algorithm.
35  /// </summary>
36  [Item("Gaussian Process Regression", "Gaussian process regression data analysis algorithm.")]
[12504]37  [Creatable(CreatableAttribute.Categories.DataAnalysisRegression, Priority = 160)]
[16842]38  [StorableType("3A1DF0A2-66D1-47BB-8BE4-23003BD34271")]
[15614]39  public sealed class GaussianProcessRegression : GaussianProcessBase, IStorableContent, IDataAnalysisAlgorithm<IRegressionProblem> {
[8371]40    public string Filename { get; set; }
41
[15430]42    public override Type ProblemType {
43      get { return typeof(IRegressionProblem); }
44    }
[8371]45    public new IRegressionProblem Problem {
[15430]46      get { return (IRegressionProblem) base.Problem; }
[8371]47      set { base.Problem = value; }
48    }
49
[9096]50    private const string ModelParameterName = "Model";
[13205]51    private const string CreateSolutionParameterName = "CreateSolution";
[8323]52
[13205]53
[8323]54    #region parameter properties
[9098]55    public IConstrainedValueParameter<IGaussianProcessRegressionModelCreator> GaussianProcessModelCreatorParameter {
[15430]56      get { return (IConstrainedValueParameter<IGaussianProcessRegressionModelCreator>) Parameters[ModelCreatorParameterName]; }
[8323]57    }
[9098]58    public IFixedValueParameter<GaussianProcessRegressionSolutionCreator> GaussianProcessSolutionCreatorParameter {
[15430]59      get { return (IFixedValueParameter<GaussianProcessRegressionSolutionCreator>) Parameters[SolutionCreatorParameterName]; }
[8323]60    }
[13205]61    public IFixedValueParameter<BoolValue> CreateSolutionParameter {
[15430]62      get { return (IFixedValueParameter<BoolValue>) Parameters[CreateSolutionParameterName]; }
[13205]63    }
[8323]64    #endregion
[13205]65    #region properties
66    public bool CreateSolution {
67      get { return CreateSolutionParameter.Value.Value; }
68      set { CreateSolutionParameter.Value.Value = value; }
69    }
70    #endregion
[8419]71
[8323]72    [StorableConstructor]
[16842]73    private GaussianProcessRegression(StorableConstructorFlag _) : base(_) { }
[8323]74    private GaussianProcessRegression(GaussianProcessRegression original, Cloner cloner)
75      : base(original, cloner) {
[9096]76      RegisterEventHandlers();
[8323]77    }
78    public GaussianProcessRegression()
[9096]79      : base(new RegressionProblem()) {
[8396]80      this.name = ItemName;
81      this.description = ItemDescription;
82
[9096]83      var modelCreators = ApplicationManager.Manager.GetInstances<IGaussianProcessRegressionModelCreator>();
84      var defaultModelCreator = modelCreators.First(c => c is GaussianProcessRegressionModelCreator);
[8323]85
[9096]86      // GP regression and classification algorithms only differ in the model and solution creators,
87      // thus we use a common base class and use operator parameters to implement the specific versions.
88      // Different model creators can be implemented,
89      // but the solution creator is implemented in a generic fashion already and we don't allow derived solution creators
90      Parameters.Add(new ConstrainedValueParameter<IGaussianProcessRegressionModelCreator>(ModelCreatorParameterName, "The operator to create the Gaussian process model.",
91        new ItemSet<IGaussianProcessRegressionModelCreator>(modelCreators), defaultModelCreator));
[13205]92      // the solution creator cannot be changed
[9096]93      Parameters.Add(new FixedValueParameter<GaussianProcessRegressionSolutionCreator>(SolutionCreatorParameterName, "The solution creator for the algorithm",
94        new GaussianProcessRegressionSolutionCreator()));
95      Parameters[SolutionCreatorParameterName].Hidden = true;
[13205]96      // TODO: it would be better to deactivate the solution creator when this parameter is changed
97      Parameters.Add(new FixedValueParameter<BoolValue>(CreateSolutionParameterName, "Flag that indicates if a solution should be produced at the end of the run", new BoolValue(true)));
98      Parameters[CreateSolutionParameterName].Hidden = true;
[8419]99
[9096]100      ParameterizedModelCreators();
[9098]101      ParameterizeSolutionCreator(GaussianProcessSolutionCreatorParameter.Value);
[9096]102      RegisterEventHandlers();
103    }
[8371]104
105
[9096]106    [StorableHook(HookType.AfterDeserialization)]
107    private void AfterDeserialization() {
[13205]108      // BackwardsCompatibility3.3
109      #region Backwards compatible code, remove with 3.4
110      if (!Parameters.ContainsKey(CreateSolutionParameterName)) {
111        Parameters.Add(new FixedValueParameter<BoolValue>(CreateSolutionParameterName, "Flag that indicates if a solution should be produced at the end of the run", new BoolValue(true)));
112        Parameters[CreateSolutionParameterName].Hidden = true;
113      }
114      #endregion
[9096]115      RegisterEventHandlers();
116    }
[8371]117
[9096]118    public override IDeepCloneable Clone(Cloner cloner) {
119      return new GaussianProcessRegression(this, cloner);
120    }
[8371]121
[9096]122    #region events
123    private void RegisterEventHandlers() {
[9098]124      GaussianProcessModelCreatorParameter.ValueChanged += ModelCreatorParameter_ValueChanged;
[9096]125    }
[8371]126
[9096]127    private void ModelCreatorParameter_ValueChanged(object sender, EventArgs e) {
[9098]128      ParameterizedModelCreator(GaussianProcessModelCreatorParameter.Value);
[9096]129    }
130    #endregion
[8371]131
[9096]132    private void ParameterizedModelCreators() {
[9098]133      foreach (var creator in GaussianProcessModelCreatorParameter.ValidValues) {
[9096]134        ParameterizedModelCreator(creator);
135      }
136    }
[8371]137
[9096]138    private void ParameterizedModelCreator(IGaussianProcessRegressionModelCreator modelCreator) {
[8371]139      modelCreator.ProblemDataParameter.ActualName = Problem.ProblemDataParameter.Name;
140      modelCreator.MeanFunctionParameter.ActualName = MeanFunctionParameterName;
141      modelCreator.CovarianceFunctionParameter.ActualName = CovarianceFunctionParameterName;
142
[9096]143      // parameter names fixed by the algorithm
144      modelCreator.ModelParameter.ActualName = ModelParameterName;
145      modelCreator.HyperparameterParameter.ActualName = HyperparameterParameterName;
146      modelCreator.HyperparameterGradientsParameter.ActualName = HyperparameterGradientsParameterName;
147      modelCreator.NegativeLogLikelihoodParameter.ActualName = NegativeLogLikelihoodParameterName;
148    }
[8371]149
[9096]150    private void ParameterizeSolutionCreator(GaussianProcessRegressionSolutionCreator solutionCreator) {
151      solutionCreator.ModelParameter.ActualName = ModelParameterName;
[8375]152      solutionCreator.ProblemDataParameter.ActualName = Problem.ProblemDataParameter.Name;
[8323]153    }
154  }
[15430]155}
Note: See TracBrowser for help on using the repository browser.