1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2018 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using HeuristicLab.Common;
|
---|
25 | using HeuristicLab.Core;
|
---|
26 | using HeuristicLab.Data;
|
---|
27 | using HeuristicLab.Optimization;
|
---|
28 | using HeuristicLab.Parameters;
|
---|
29 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
30 | using HeuristicLab.Problems.VehicleRouting.Interfaces;
|
---|
31 | using HeuristicLab.Problems.VehicleRouting.ProblemInstances;
|
---|
32 | using HeuristicLab.Problems.VehicleRouting.Variants;
|
---|
33 |
|
---|
34 | namespace HeuristicLab.Problems.VehicleRouting.Encodings.Potvin {
|
---|
35 | [Item("PushForwardInsertionCreator", "The push forward insertion heuristic. It is implemented as described in Sam, and Thangiah, R. (1999). A Hybrid Genetic Algorithms, Simulated Annealing and Tabu Search Heuristic for Vehicle Routing Problems with Time Windows. Practical Handbook of Genetic Algorithms, Volume III, pp 347–381.")]
|
---|
36 | [StorableClass]
|
---|
37 | public sealed class PushForwardInsertionCreator : PotvinCreator, IStochasticOperator {
|
---|
38 | #region IStochasticOperator Members
|
---|
39 | public ILookupParameter<IRandom> RandomParameter {
|
---|
40 | get { return (LookupParameter<IRandom>)Parameters["Random"]; }
|
---|
41 | }
|
---|
42 | #endregion
|
---|
43 |
|
---|
44 | public IValueParameter<DoubleValue> Alpha {
|
---|
45 | get { return (IValueParameter<DoubleValue>)Parameters["Alpha"]; }
|
---|
46 | }
|
---|
47 | public IValueParameter<DoubleValue> AlphaVariance {
|
---|
48 | get { return (IValueParameter<DoubleValue>)Parameters["AlphaVariance"]; }
|
---|
49 | }
|
---|
50 | public IValueParameter<DoubleValue> Beta {
|
---|
51 | get { return (IValueParameter<DoubleValue>)Parameters["Beta"]; }
|
---|
52 | }
|
---|
53 | public IValueParameter<DoubleValue> BetaVariance {
|
---|
54 | get { return (IValueParameter<DoubleValue>)Parameters["BetaVariance"]; }
|
---|
55 | }
|
---|
56 | public IValueParameter<DoubleValue> Gamma {
|
---|
57 | get { return (IValueParameter<DoubleValue>)Parameters["Gamma"]; }
|
---|
58 | }
|
---|
59 | public IValueParameter<DoubleValue> GammaVariance {
|
---|
60 | get { return (IValueParameter<DoubleValue>)Parameters["GammaVariance"]; }
|
---|
61 | }
|
---|
62 |
|
---|
63 | [StorableConstructor]
|
---|
64 | private PushForwardInsertionCreator(bool deserializing) : base(deserializing) { }
|
---|
65 |
|
---|
66 | public PushForwardInsertionCreator()
|
---|
67 | : base() {
|
---|
68 | Parameters.Add(new LookupParameter<IRandom>("Random", "The pseudo random number generator."));
|
---|
69 | Parameters.Add(new ValueParameter<DoubleValue>("Alpha", "The alpha value.", new DoubleValue(0.7)));
|
---|
70 | Parameters.Add(new ValueParameter<DoubleValue>("AlphaVariance", "The alpha variance.", new DoubleValue(0.5)));
|
---|
71 | Parameters.Add(new ValueParameter<DoubleValue>("Beta", "The beta value.", new DoubleValue(0.1)));
|
---|
72 | Parameters.Add(new ValueParameter<DoubleValue>("BetaVariance", "The beta variance.", new DoubleValue(0.07)));
|
---|
73 | Parameters.Add(new ValueParameter<DoubleValue>("Gamma", "The gamma value.", new DoubleValue(0.2)));
|
---|
74 | Parameters.Add(new ValueParameter<DoubleValue>("GammaVariance", "The gamma variance.", new DoubleValue(0.14)));
|
---|
75 | }
|
---|
76 |
|
---|
77 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
78 | return new PushForwardInsertionCreator(this, cloner);
|
---|
79 | }
|
---|
80 |
|
---|
81 | private PushForwardInsertionCreator(PushForwardInsertionCreator original, Cloner cloner)
|
---|
82 | : base(original, cloner) {
|
---|
83 | }
|
---|
84 |
|
---|
85 | // use the Box-Mueller transform in the polar form to generate a N(0,1) random variable out of two uniformly distributed random variables
|
---|
86 | private static double Gauss(IRandom random) {
|
---|
87 | double u = 0.0, v = 0.0, s = 0.0;
|
---|
88 | do {
|
---|
89 | u = (random.NextDouble() * 2) - 1;
|
---|
90 | v = (random.NextDouble() * 2) - 1;
|
---|
91 | s = Math.Sqrt(u * u + v * v);
|
---|
92 | } while (s < Double.Epsilon || s > 1);
|
---|
93 | return u * Math.Sqrt((-2.0 * Math.Log(s)) / s);
|
---|
94 | }
|
---|
95 |
|
---|
96 | private static double N(double mu, double sigma, IRandom random) {
|
---|
97 | return mu + (sigma * Gauss(random)); // transform the random variable sampled from N(0,1) to N(mu,sigma)
|
---|
98 | }
|
---|
99 |
|
---|
100 | private static double GetDistance(int start, int end, IVRPProblemInstance problemInstance) {
|
---|
101 | double distance = 0.0;
|
---|
102 |
|
---|
103 | double startX = problemInstance.Coordinates[start, 0];
|
---|
104 | double startY = problemInstance.Coordinates[start, 1];
|
---|
105 |
|
---|
106 | double endX = problemInstance.Coordinates[end, 0];
|
---|
107 | double endY = problemInstance.Coordinates[end, 1];
|
---|
108 |
|
---|
109 | distance =
|
---|
110 | Math.Sqrt(
|
---|
111 | Math.Pow(startX - endX, 2) +
|
---|
112 | Math.Pow(startY - endY, 2));
|
---|
113 |
|
---|
114 | return distance;
|
---|
115 | }
|
---|
116 |
|
---|
117 | private static int GetNearestDepot(IVRPProblemInstance problemInstance, List<int> depots, int customer,
|
---|
118 | double alpha, double beta, double gamma, out double minCost) {
|
---|
119 | int nearest = -1;
|
---|
120 | minCost = double.MaxValue;
|
---|
121 |
|
---|
122 | int depotCount = 1;
|
---|
123 | IMultiDepotProblemInstance mdp = problemInstance as IMultiDepotProblemInstance;
|
---|
124 | if (mdp != null) {
|
---|
125 | depotCount = mdp.Depots.Value;
|
---|
126 | }
|
---|
127 |
|
---|
128 | foreach (int depot in depots) {
|
---|
129 | double x0 = problemInstance.Coordinates[depot, 0];
|
---|
130 | double y0 = problemInstance.Coordinates[depot, 1];
|
---|
131 |
|
---|
132 | double distance = GetDistance(customer + depotCount - 1, depot, problemInstance);
|
---|
133 |
|
---|
134 | double dueTime = 0;
|
---|
135 | if (problemInstance is ITimeWindowedProblemInstance)
|
---|
136 | dueTime = (problemInstance as ITimeWindowedProblemInstance).DueTime[customer + depotCount - 1];
|
---|
137 | if (dueTime == double.MaxValue)
|
---|
138 | dueTime = 0;
|
---|
139 |
|
---|
140 | double x = problemInstance.Coordinates[customer + depotCount - 1, 0];
|
---|
141 | double y = problemInstance.Coordinates[customer + depotCount - 1, 1];
|
---|
142 |
|
---|
143 | double cost = alpha * distance + // distance 0 <-> City[i]
|
---|
144 | -beta * dueTime + // latest arrival time
|
---|
145 | -gamma * ((Math.Atan2(y - y0, x - x0) + Math.PI) / (2.0 * Math.PI) * distance); // polar angle
|
---|
146 |
|
---|
147 | if (cost < minCost) {
|
---|
148 | minCost = cost;
|
---|
149 | nearest = depot;
|
---|
150 | }
|
---|
151 | }
|
---|
152 |
|
---|
153 | return nearest;
|
---|
154 | }
|
---|
155 |
|
---|
156 | private static List<int> SortCustomers(IVRPProblemInstance problemInstance, List<int> customers, List<int> depots,
|
---|
157 | Dictionary<int, int> depotAssignment,
|
---|
158 | double alpha, double beta, double gamma) {
|
---|
159 | List<int> sortedCustomers = new List<int>();
|
---|
160 | depotAssignment.Clear();
|
---|
161 |
|
---|
162 | List<double> costList = new List<double>();
|
---|
163 |
|
---|
164 | for (int i = 0; i < customers.Count; i++) {
|
---|
165 | double cost;
|
---|
166 | int depot = GetNearestDepot(problemInstance, depots, customers[i],
|
---|
167 | alpha, beta, gamma,
|
---|
168 | out cost);
|
---|
169 | depotAssignment[customers[i]] = depot;
|
---|
170 |
|
---|
171 | int index = 0;
|
---|
172 | while (index < costList.Count && costList[index] < cost) index++;
|
---|
173 | costList.Insert(index, cost);
|
---|
174 | sortedCustomers.Insert(index, customers[i]);
|
---|
175 | }
|
---|
176 |
|
---|
177 | return sortedCustomers;
|
---|
178 | }
|
---|
179 |
|
---|
180 | private static bool RemoveUnusedDepots(List<int> depots, Dictionary<int, List<int>> vehicles) {
|
---|
181 | List<int> toBeRemoved = new List<int>();
|
---|
182 |
|
---|
183 | foreach (int depot in depots) {
|
---|
184 | if (vehicles[depot].Count == 0)
|
---|
185 | toBeRemoved.Add(depot);
|
---|
186 | }
|
---|
187 |
|
---|
188 | foreach (int depot in toBeRemoved) {
|
---|
189 | depots.Remove(depot);
|
---|
190 | vehicles.Remove(depot);
|
---|
191 | }
|
---|
192 |
|
---|
193 | return toBeRemoved.Count > 0;
|
---|
194 | }
|
---|
195 |
|
---|
196 | public static PotvinEncoding CreateSolution(IVRPProblemInstance problemInstance, IRandom random,
|
---|
197 | double alphaValue = 0.7, double betaValue = 0.1, double gammaValue = 0.2,
|
---|
198 | double alphaVariance = 0.5, double betaVariance = 0.07, double gammaVariance = 0.14) {
|
---|
199 | PotvinEncoding result = new PotvinEncoding(problemInstance);
|
---|
200 |
|
---|
201 | IPickupAndDeliveryProblemInstance pdp = problemInstance as IPickupAndDeliveryProblemInstance;
|
---|
202 | IMultiDepotProblemInstance mdp = problemInstance as IMultiDepotProblemInstance;
|
---|
203 |
|
---|
204 | double alpha, beta, gamma;
|
---|
205 | alpha = N(alphaValue, Math.Sqrt(alphaVariance), random);
|
---|
206 | beta = N(betaValue, Math.Sqrt(betaVariance), random);
|
---|
207 | gamma = N(gammaValue, Math.Sqrt(gammaVariance), random);
|
---|
208 |
|
---|
209 | List<int> unroutedCustomers = new List<int>();
|
---|
210 | for (int i = 1; i <= problemInstance.Cities.Value; i++) {
|
---|
211 | if (pdp == null || (problemInstance.GetDemand(i) >= 0))
|
---|
212 | unroutedCustomers.Add(i);
|
---|
213 | }
|
---|
214 |
|
---|
215 | List<int> depots = new List<int>();
|
---|
216 | if (mdp != null) {
|
---|
217 | for (int i = 0; i < mdp.Depots.Value; i++) {
|
---|
218 | depots.Add(i);
|
---|
219 | }
|
---|
220 | } else {
|
---|
221 | depots.Add(0);
|
---|
222 | }
|
---|
223 |
|
---|
224 | Dictionary<int, List<int>> vehicles = new Dictionary<int, List<int>>();
|
---|
225 | foreach (int depot in depots) {
|
---|
226 | vehicles[depot] = new List<int>();
|
---|
227 |
|
---|
228 | int vehicleCount = problemInstance.Vehicles.Value;
|
---|
229 | if (mdp != null) {
|
---|
230 | for (int vehicle = 0; vehicle < mdp.VehicleDepotAssignment.Length; vehicle++) {
|
---|
231 | if (mdp.VehicleDepotAssignment[vehicle] == depot) {
|
---|
232 | vehicles[depot].Add(vehicle);
|
---|
233 | }
|
---|
234 | }
|
---|
235 | } else {
|
---|
236 | for (int vehicle = 0; vehicle < vehicleCount; vehicle++) {
|
---|
237 | vehicles[depot].Add(vehicle);
|
---|
238 | }
|
---|
239 | }
|
---|
240 | }
|
---|
241 |
|
---|
242 | RemoveUnusedDepots(depots, vehicles);
|
---|
243 | Dictionary<int, int> depotAssignment = new Dictionary<int, int>();
|
---|
244 |
|
---|
245 | unroutedCustomers = SortCustomers(
|
---|
246 | problemInstance, unroutedCustomers, depots, depotAssignment,
|
---|
247 | alpha, beta, gamma);
|
---|
248 |
|
---|
249 | /////////
|
---|
250 | Tour tour = new Tour();
|
---|
251 | result.Tours.Add(tour);
|
---|
252 | int currentCustomer = unroutedCustomers[0];
|
---|
253 | unroutedCustomers.RemoveAt(0);
|
---|
254 |
|
---|
255 | int currentDepot = depotAssignment[currentCustomer];
|
---|
256 | int currentVehicle = vehicles[currentDepot][0];
|
---|
257 | vehicles[currentDepot].RemoveAt(0);
|
---|
258 | if (RemoveUnusedDepots(depots, vehicles)) {
|
---|
259 | unroutedCustomers = SortCustomers(
|
---|
260 | problemInstance, unroutedCustomers, depots, depotAssignment,
|
---|
261 | alpha, beta, gamma);
|
---|
262 | }
|
---|
263 |
|
---|
264 | result.VehicleAssignment[result.Tours.Count - 1] = currentVehicle;
|
---|
265 |
|
---|
266 | tour.Stops.Add(currentCustomer);
|
---|
267 | if (pdp != null) {
|
---|
268 | tour.Stops.Add(pdp.GetPickupDeliveryLocation(currentCustomer));
|
---|
269 | }
|
---|
270 | ////////
|
---|
271 |
|
---|
272 | while (unroutedCustomers.Count > 0) {
|
---|
273 | double minimumCost = double.MaxValue;
|
---|
274 | int customer = -1;
|
---|
275 | int indexOfMinimumCost = -1;
|
---|
276 | int indexOfMinimumCost2 = -1;
|
---|
277 |
|
---|
278 | foreach (int unrouted in unroutedCustomers) {
|
---|
279 | VRPEvaluation eval = problemInstance.EvaluateTour(tour, result);
|
---|
280 | double originalCosts = eval.Quality;
|
---|
281 |
|
---|
282 | for (int i = 0; i <= tour.Stops.Count; i++) {
|
---|
283 | tour.Stops.Insert(i, unrouted);
|
---|
284 | eval = problemInstance.EvaluateTour(tour, result);
|
---|
285 | double tourCost = eval.Quality - originalCosts;
|
---|
286 |
|
---|
287 | if (pdp != null) {
|
---|
288 | for (int j = i + 1; j <= tour.Stops.Count; j++) {
|
---|
289 | bool feasible;
|
---|
290 | double cost = tourCost +
|
---|
291 | problemInstance.GetInsertionCosts(eval, result, pdp.GetPickupDeliveryLocation(unrouted), 0, j, out feasible);
|
---|
292 | if (cost < minimumCost && feasible) {
|
---|
293 | customer = unrouted;
|
---|
294 | minimumCost = cost;
|
---|
295 | indexOfMinimumCost = i;
|
---|
296 | indexOfMinimumCost2 = j;
|
---|
297 | }
|
---|
298 | }
|
---|
299 | } else {
|
---|
300 | double cost = tourCost;
|
---|
301 | bool feasible = problemInstance.Feasible(eval);
|
---|
302 | if (cost < minimumCost && feasible) {
|
---|
303 | customer = unrouted;
|
---|
304 | minimumCost = cost;
|
---|
305 | indexOfMinimumCost = i;
|
---|
306 | }
|
---|
307 | }
|
---|
308 |
|
---|
309 | tour.Stops.RemoveAt(i);
|
---|
310 | }
|
---|
311 | }
|
---|
312 |
|
---|
313 | if (indexOfMinimumCost == -1 && vehicles.Count == 0) {
|
---|
314 | indexOfMinimumCost = tour.Stops.Count;
|
---|
315 | indexOfMinimumCost2 = tour.Stops.Count + 1;
|
---|
316 | customer = unroutedCustomers[0];
|
---|
317 | }
|
---|
318 |
|
---|
319 | // insert customer if found
|
---|
320 | if (indexOfMinimumCost != -1) {
|
---|
321 | tour.Stops.Insert(indexOfMinimumCost, customer);
|
---|
322 | if (pdp != null) {
|
---|
323 | tour.Stops.Insert(indexOfMinimumCost2, pdp.GetPickupDeliveryLocation(customer));
|
---|
324 | }
|
---|
325 |
|
---|
326 | unroutedCustomers.Remove(customer);
|
---|
327 | } else { // no feasible customer found
|
---|
328 | tour = new Tour();
|
---|
329 | result.Tours.Add(tour);
|
---|
330 | currentCustomer = unroutedCustomers[0];
|
---|
331 | unroutedCustomers.RemoveAt(0);
|
---|
332 |
|
---|
333 | currentDepot = depotAssignment[currentCustomer];
|
---|
334 | currentVehicle = vehicles[currentDepot][0];
|
---|
335 | vehicles[currentDepot].RemoveAt(0);
|
---|
336 | if (RemoveUnusedDepots(depots, vehicles)) {
|
---|
337 | unroutedCustomers = SortCustomers(
|
---|
338 | problemInstance, unroutedCustomers, depots, depotAssignment,
|
---|
339 | alpha, beta, gamma);
|
---|
340 | }
|
---|
341 |
|
---|
342 | result.VehicleAssignment[result.Tours.Count - 1] = currentVehicle;
|
---|
343 |
|
---|
344 | tour.Stops.Add(currentCustomer);
|
---|
345 | if (pdp != null) {
|
---|
346 | tour.Stops.Add(pdp.GetPickupDeliveryLocation(currentCustomer));
|
---|
347 | }
|
---|
348 | }
|
---|
349 | }
|
---|
350 |
|
---|
351 | if (mdp != null) {
|
---|
352 | List<int> availableVehicles = new List<int>();
|
---|
353 | for (int i = 0; i < mdp.Vehicles.Value; i++)
|
---|
354 | availableVehicles.Add(i);
|
---|
355 |
|
---|
356 | for (int i = 0; i < result.VehicleAssignment.Length; i++) {
|
---|
357 | if (result.VehicleAssignment[i] != -1)
|
---|
358 | availableVehicles.Remove(result.VehicleAssignment[i]);
|
---|
359 | }
|
---|
360 |
|
---|
361 | for (int i = 0; i < result.VehicleAssignment.Length; i++) {
|
---|
362 | if (result.VehicleAssignment[i] == -1) {
|
---|
363 | result.VehicleAssignment[i] = availableVehicles[0];
|
---|
364 | availableVehicles.RemoveAt(0);
|
---|
365 | }
|
---|
366 | }
|
---|
367 | }
|
---|
368 |
|
---|
369 | return result;
|
---|
370 | }
|
---|
371 |
|
---|
372 | public override IOperation InstrumentedApply() {
|
---|
373 | VRPToursParameter.ActualValue = CreateSolution(ProblemInstance, RandomParameter.ActualValue,
|
---|
374 | Alpha.Value.Value, Beta.Value.Value, Gamma.Value.Value,
|
---|
375 | AlphaVariance.Value.Value, BetaVariance.Value.Value, GammaVariance.Value.Value);
|
---|
376 |
|
---|
377 | return base.InstrumentedApply();
|
---|
378 | }
|
---|
379 | }
|
---|
380 | }
|
---|