[8750] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
[16057] | 3 | * Copyright (C) 2002-2018 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
[8750] | 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
| 23 | using System.Collections.Generic;
|
---|
| 24 | using System.Linq;
|
---|
| 25 | using HeuristicLab.Common;
|
---|
| 26 | using HeuristicLab.Core;
|
---|
| 27 | using HeuristicLab.Data;
|
---|
| 28 | using HeuristicLab.Optimization;
|
---|
| 29 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
| 30 |
|
---|
| 31 | namespace HeuristicLab.Problems.DataAnalysis {
|
---|
| 32 | [StorableClass]
|
---|
| 33 | [Item("Prognosis Results", "Represents a collection of time series prognosis results.")]
|
---|
| 34 | public class TimeSeriesPrognosisResults : ResultCollection {
|
---|
| 35 | #region result names
|
---|
| 36 | protected const string PrognosisTrainingMeanSquaredErrorResultName = "Mean squared error (training)";
|
---|
| 37 | protected const string PrognosisTestMeanSquaredErrorResultName = "Mean squared error (test)";
|
---|
| 38 | protected const string PrognosisTrainingMeanAbsoluteErrorResultName = "Mean absolute error (training)";
|
---|
| 39 | protected const string PrognosisTestMeanAbsoluteErrorResultName = "Mean absolute error (test)";
|
---|
| 40 | protected const string PrognosisTrainingSquaredCorrelationResultName = "Pearson's R² (training)";
|
---|
| 41 | protected const string PrognosisTestSquaredCorrelationResultName = "Pearson's R² (test)";
|
---|
| 42 | protected const string PrognosisTrainingRelativeErrorResultName = "Average relative error (training)";
|
---|
| 43 | protected const string PrognosisTestRelativeErrorResultName = "Average relative error (test)";
|
---|
| 44 | protected const string PrognosisTrainingNormalizedMeanSquaredErrorResultName = "Normalized mean squared error (training)";
|
---|
| 45 | protected const string PrognosisTestNormalizedMeanSquaredErrorResultName = "Normalized mean squared error (test)";
|
---|
| 46 | protected const string PrognosisTrainingMeanErrorResultName = "Mean error (training)";
|
---|
| 47 | protected const string PrognosisTestMeanErrorResultName = "Mean error (test)";
|
---|
| 48 |
|
---|
| 49 | protected const string PrognosisTrainingDirectionalSymmetryResultName = "Average directional symmetry (training)";
|
---|
| 50 | protected const string PrognosisTestDirectionalSymmetryResultName = "Average directional symmetry (test)";
|
---|
| 51 | protected const string PrognosisTrainingWeightedDirectionalSymmetryResultName = "Average weighted directional symmetry (training)";
|
---|
| 52 | protected const string PrognosisTestWeightedDirectionalSymmetryResultName = "Average weighted directional symmetry (test)";
|
---|
| 53 | protected const string PrognosisTrainingTheilsUStatisticAR1ResultName = "Theil's U2 (AR1) (training)";
|
---|
| 54 | protected const string PrognosisTestTheilsUStatisticAR1ResultName = "Theil's U2 (AR1) (test)";
|
---|
| 55 | protected const string PrognosisTrainingTheilsUStatisticMeanResultName = "Theil's U2 (mean) (training)";
|
---|
| 56 | protected const string PrognosisTestTheilsUStatisticMeanResultName = "Theil's U2 (mean) (test)";
|
---|
| 57 | #endregion
|
---|
| 58 |
|
---|
| 59 | #region result descriptions
|
---|
| 60 | protected const string PrognosisTrainingMeanSquaredErrorResultDescription = "Mean of squared errors of the model on the training partition";
|
---|
| 61 | protected const string PrognosisTestMeanSquaredErrorResultDescription = "Mean of squared errors of the model on the test partition";
|
---|
| 62 | protected const string PrognosisTrainingMeanAbsoluteErrorResultDescription = "Mean of absolute errors of the model on the training partition";
|
---|
| 63 | protected const string PrognosisTestMeanAbsoluteErrorResultDescription = "Mean of absolute errors of the model on the test partition";
|
---|
| 64 | protected const string PrognosisTrainingSquaredCorrelationResultDescription = "Squared Pearson's correlation coefficient of the model output and the actual values on the training partition";
|
---|
| 65 | protected const string PrognosisTestSquaredCorrelationResultDescription = "Squared Pearson's correlation coefficient of the model output and the actual values on the test partition";
|
---|
| 66 | protected const string PrognosisTrainingRelativeErrorResultDescription = "Average of the relative errors of the model output and the actual values on the training partition";
|
---|
| 67 | protected const string PrognosisTestRelativeErrorResultDescription = "Average of the relative errors of the model output and the actual values on the test partition";
|
---|
| 68 | protected const string PrognosisTrainingNormalizedMeanSquaredErrorResultDescription = "Normalized mean of squared errors of the model on the training partition";
|
---|
| 69 | protected const string PrognosisTestNormalizedMeanSquaredErrorResultDescription = "Normalized mean of squared errors of the model on the test partition";
|
---|
| 70 | protected const string PrognosisTrainingMeanErrorResultDescription = "Mean of errors of the model on the training partition";
|
---|
| 71 | protected const string PrognosisTestMeanErrorResultDescription = "Mean of errors of the model on the test partition";
|
---|
| 72 |
|
---|
| 73 | protected const string PrognosisTrainingDirectionalSymmetryResultDescription = "The average directional symmetry of the forecasts of the model on the training partition";
|
---|
| 74 | protected const string PrognosisTestDirectionalSymmetryResultDescription = "The average directional symmetry of the forecasts of the model on the test partition";
|
---|
| 75 | protected const string PrognosisTrainingWeightedDirectionalSymmetryResultDescription = "The average weighted directional symmetry of the forecasts of the model on the training partition";
|
---|
| 76 | protected const string PrognosisTestWeightedDirectionalSymmetryResultDescription = "The average weighted directional symmetry of the forecasts of the model on the test partition";
|
---|
| 77 | protected const string PrognosisTrainingTheilsUStatisticAR1ResultDescription = "The Theil's U statistic (reference: AR1 model) of the forecasts of the model on the training partition";
|
---|
| 78 | protected const string PrognosisTestTheilsUStatisticAR1ResultDescription = "The Theil's U statistic (reference: AR1 model) of the forecasts of the model on the test partition";
|
---|
| 79 | protected const string PrognosisTrainingTheilsUStatisticMeanResultDescription = "The Theil's U statistic (reference: mean model) of the forecasts of the model on the training partition";
|
---|
| 80 | protected const string PrognosisTestTheilsUStatisticMeanResultDescription = "The Theil's U statistic (reference: mean value) of the forecasts of the model on the test partition";
|
---|
| 81 | #endregion
|
---|
| 82 |
|
---|
| 83 | #region result properties
|
---|
| 84 | //prognosis results for different horizons
|
---|
| 85 | public double PrognosisTrainingMeanSquaredError {
|
---|
| 86 | get {
|
---|
| 87 | if (!ContainsKey(PrognosisTrainingMeanSquaredErrorResultName)) return double.NaN;
|
---|
| 88 | return ((DoubleValue)this[PrognosisTrainingMeanSquaredErrorResultName].Value).Value;
|
---|
| 89 | }
|
---|
| 90 | private set {
|
---|
| 91 | if (!ContainsKey(PrognosisTrainingMeanSquaredErrorResultName)) Add(new Result(PrognosisTrainingMeanSquaredErrorResultName, PrognosisTrainingMeanSquaredErrorResultDescription, new DoubleValue()));
|
---|
| 92 | ((DoubleValue)this[PrognosisTrainingMeanSquaredErrorResultName].Value).Value = value;
|
---|
| 93 | }
|
---|
| 94 | }
|
---|
| 95 |
|
---|
| 96 | public double PrognosisTestMeanSquaredError {
|
---|
| 97 | get {
|
---|
| 98 | if (!ContainsKey(PrognosisTestMeanSquaredErrorResultName)) return double.NaN;
|
---|
| 99 | return ((DoubleValue)this[PrognosisTestMeanSquaredErrorResultName].Value).Value;
|
---|
| 100 | }
|
---|
| 101 | private set {
|
---|
| 102 | if (!ContainsKey(PrognosisTestMeanSquaredErrorResultName)) Add(new Result(PrognosisTestMeanSquaredErrorResultName, PrognosisTestMeanSquaredErrorResultDescription, new DoubleValue()));
|
---|
| 103 | ((DoubleValue)this[PrognosisTestMeanSquaredErrorResultName].Value).Value = value;
|
---|
| 104 | }
|
---|
| 105 | }
|
---|
| 106 |
|
---|
| 107 | public double PrognosisTrainingMeanAbsoluteError {
|
---|
| 108 | get {
|
---|
| 109 | if (!ContainsKey(PrognosisTrainingMeanAbsoluteErrorResultName)) return double.NaN;
|
---|
| 110 | return ((DoubleValue)this[PrognosisTrainingMeanAbsoluteErrorResultName].Value).Value;
|
---|
| 111 | }
|
---|
| 112 | private set {
|
---|
| 113 | if (!ContainsKey(PrognosisTrainingMeanAbsoluteErrorResultName)) Add(new Result(PrognosisTrainingMeanAbsoluteErrorResultName, PrognosisTrainingMeanAbsoluteErrorResultDescription, new DoubleValue()));
|
---|
| 114 | ((DoubleValue)this[PrognosisTrainingMeanAbsoluteErrorResultName].Value).Value = value;
|
---|
| 115 | }
|
---|
| 116 | }
|
---|
| 117 |
|
---|
| 118 | public double PrognosisTestMeanAbsoluteError {
|
---|
| 119 | get {
|
---|
| 120 | if (!ContainsKey(PrognosisTestMeanAbsoluteErrorResultName)) return double.NaN;
|
---|
| 121 | return ((DoubleValue)this[PrognosisTestMeanAbsoluteErrorResultName].Value).Value;
|
---|
| 122 | }
|
---|
| 123 | private set {
|
---|
| 124 | if (!ContainsKey(PrognosisTestMeanAbsoluteErrorResultName)) Add(new Result(PrognosisTestMeanAbsoluteErrorResultName, PrognosisTestMeanAbsoluteErrorResultDescription, new DoubleValue()));
|
---|
| 125 | ((DoubleValue)this[PrognosisTestMeanAbsoluteErrorResultName].Value).Value = value;
|
---|
| 126 | }
|
---|
| 127 | }
|
---|
| 128 |
|
---|
| 129 | public double PrognosisTrainingRSquared {
|
---|
| 130 | get {
|
---|
| 131 | if (!ContainsKey(PrognosisTrainingSquaredCorrelationResultName)) return double.NaN;
|
---|
| 132 | return ((DoubleValue)this[PrognosisTrainingSquaredCorrelationResultName].Value).Value;
|
---|
| 133 | }
|
---|
| 134 | private set {
|
---|
| 135 | if (!ContainsKey(PrognosisTrainingSquaredCorrelationResultName)) Add(new Result(PrognosisTrainingSquaredCorrelationResultName, PrognosisTrainingSquaredCorrelationResultDescription, new DoubleValue()));
|
---|
| 136 | ((DoubleValue)this[PrognosisTrainingSquaredCorrelationResultName].Value).Value = value;
|
---|
| 137 | }
|
---|
| 138 | }
|
---|
| 139 |
|
---|
| 140 | public double PrognosisTestRSquared {
|
---|
| 141 | get {
|
---|
| 142 | if (!ContainsKey(PrognosisTestSquaredCorrelationResultName)) return double.NaN;
|
---|
| 143 | return ((DoubleValue)this[PrognosisTestSquaredCorrelationResultName].Value).Value;
|
---|
| 144 | }
|
---|
| 145 | private set {
|
---|
| 146 | if (!ContainsKey(PrognosisTestSquaredCorrelationResultName)) Add(new Result(PrognosisTestSquaredCorrelationResultName, PrognosisTestSquaredCorrelationResultDescription, new DoubleValue()));
|
---|
| 147 | ((DoubleValue)this[PrognosisTestSquaredCorrelationResultName].Value).Value = value;
|
---|
| 148 | }
|
---|
| 149 | }
|
---|
| 150 |
|
---|
| 151 | public double PrognosisTrainingRelativeError {
|
---|
| 152 | get {
|
---|
| 153 | if (!ContainsKey(PrognosisTrainingRelativeErrorResultName)) return double.NaN;
|
---|
| 154 | return ((DoubleValue)this[PrognosisTrainingRelativeErrorResultName].Value).Value;
|
---|
| 155 | }
|
---|
| 156 | private set {
|
---|
| 157 | if (!ContainsKey(PrognosisTrainingRelativeErrorResultName)) Add(new Result(PrognosisTrainingRelativeErrorResultName, PrognosisTrainingRelativeErrorResultDescription, new DoubleValue()));
|
---|
| 158 | ((DoubleValue)this[PrognosisTrainingRelativeErrorResultName].Value).Value = value;
|
---|
| 159 | }
|
---|
| 160 | }
|
---|
| 161 |
|
---|
| 162 | public double PrognosisTestRelativeError {
|
---|
| 163 | get {
|
---|
| 164 | if (!ContainsKey(PrognosisTestRelativeErrorResultName)) return double.NaN;
|
---|
| 165 | return ((DoubleValue)this[PrognosisTestRelativeErrorResultName].Value).Value;
|
---|
| 166 | }
|
---|
| 167 | private set {
|
---|
| 168 | if (!ContainsKey(PrognosisTestRelativeErrorResultName)) Add(new Result(PrognosisTestRelativeErrorResultName, PrognosisTestRelativeErrorResultDescription, new DoubleValue()));
|
---|
| 169 | ((DoubleValue)this[PrognosisTestRelativeErrorResultName].Value).Value = value;
|
---|
| 170 | }
|
---|
| 171 | }
|
---|
| 172 |
|
---|
| 173 | public double PrognosisTrainingNormalizedMeanSquaredError {
|
---|
| 174 | get {
|
---|
| 175 | if (!ContainsKey(PrognosisTrainingNormalizedMeanSquaredErrorResultName)) return double.NaN;
|
---|
| 176 | return ((DoubleValue)this[PrognosisTrainingNormalizedMeanSquaredErrorResultName].Value).Value;
|
---|
| 177 | }
|
---|
| 178 | private set {
|
---|
| 179 | if (!ContainsKey(PrognosisTrainingNormalizedMeanSquaredErrorResultName)) Add(new Result(PrognosisTrainingNormalizedMeanSquaredErrorResultName, PrognosisTrainingNormalizedMeanSquaredErrorResultDescription, new DoubleValue()));
|
---|
| 180 | ((DoubleValue)this[PrognosisTrainingNormalizedMeanSquaredErrorResultName].Value).Value = value;
|
---|
| 181 | }
|
---|
| 182 | }
|
---|
| 183 |
|
---|
| 184 | public double PrognosisTestNormalizedMeanSquaredError {
|
---|
| 185 | get {
|
---|
| 186 | if (!ContainsKey(PrognosisTestNormalizedMeanSquaredErrorResultName)) return double.NaN;
|
---|
| 187 | return ((DoubleValue)this[PrognosisTestNormalizedMeanSquaredErrorResultName].Value).Value;
|
---|
| 188 | }
|
---|
| 189 | private set {
|
---|
| 190 | if (!ContainsKey(PrognosisTestNormalizedMeanSquaredErrorResultName)) Add(new Result(PrognosisTestNormalizedMeanSquaredErrorResultName, PrognosisTestNormalizedMeanSquaredErrorResultDescription, new DoubleValue()));
|
---|
| 191 | ((DoubleValue)this[PrognosisTestNormalizedMeanSquaredErrorResultName].Value).Value = value;
|
---|
| 192 | }
|
---|
| 193 | }
|
---|
| 194 |
|
---|
| 195 | public double PrognosisTrainingMeanError {
|
---|
| 196 | get {
|
---|
| 197 | if (!ContainsKey(PrognosisTrainingMeanErrorResultName)) return double.NaN;
|
---|
| 198 | return ((DoubleValue)this[PrognosisTrainingMeanErrorResultName].Value).Value;
|
---|
| 199 | }
|
---|
| 200 | private set {
|
---|
| 201 | if (!ContainsKey(PrognosisTrainingMeanErrorResultName)) Add(new Result(PrognosisTrainingMeanErrorResultName, PrognosisTrainingMeanErrorResultDescription, new DoubleValue()));
|
---|
| 202 | ((DoubleValue)this[PrognosisTrainingMeanErrorResultName].Value).Value = value;
|
---|
| 203 | }
|
---|
| 204 | }
|
---|
| 205 |
|
---|
| 206 | public double PrognosisTestMeanError {
|
---|
| 207 | get {
|
---|
| 208 | if (!ContainsKey(PrognosisTestMeanErrorResultName)) return double.NaN;
|
---|
| 209 | return ((DoubleValue)this[PrognosisTestMeanErrorResultName].Value).Value;
|
---|
| 210 | }
|
---|
| 211 | private set {
|
---|
| 212 | if (!ContainsKey(PrognosisTestMeanErrorResultName)) Add(new Result(PrognosisTestMeanErrorResultName, PrognosisTestMeanErrorResultDescription, new DoubleValue()));
|
---|
| 213 | ((DoubleValue)this[PrognosisTestMeanErrorResultName].Value).Value = value;
|
---|
| 214 | }
|
---|
| 215 | }
|
---|
| 216 |
|
---|
| 217 |
|
---|
| 218 | public double PrognosisTrainingDirectionalSymmetry {
|
---|
| 219 | get {
|
---|
| 220 | if (!ContainsKey(PrognosisTrainingDirectionalSymmetryResultName)) return double.NaN;
|
---|
| 221 | return ((DoubleValue)this[PrognosisTrainingDirectionalSymmetryResultName].Value).Value;
|
---|
| 222 | }
|
---|
| 223 | private set {
|
---|
| 224 | if (!ContainsKey(PrognosisTrainingDirectionalSymmetryResultName)) Add(new Result(PrognosisTrainingDirectionalSymmetryResultName, PrognosisTrainingDirectionalSymmetryResultDescription, new DoubleValue()));
|
---|
| 225 | ((DoubleValue)this[PrognosisTrainingDirectionalSymmetryResultName].Value).Value = value;
|
---|
| 226 | }
|
---|
| 227 | }
|
---|
| 228 | public double PrognosisTestDirectionalSymmetry {
|
---|
| 229 | get {
|
---|
| 230 | if (!ContainsKey(PrognosisTestDirectionalSymmetryResultName)) return double.NaN;
|
---|
| 231 | return ((DoubleValue)this[PrognosisTestDirectionalSymmetryResultName].Value).Value;
|
---|
| 232 | }
|
---|
| 233 | private set {
|
---|
| 234 | if (!ContainsKey(PrognosisTestDirectionalSymmetryResultName)) Add(new Result(PrognosisTestDirectionalSymmetryResultName, PrognosisTestDirectionalSymmetryResultDescription, new DoubleValue()));
|
---|
| 235 | ((DoubleValue)this[PrognosisTestDirectionalSymmetryResultName].Value).Value = value;
|
---|
| 236 | }
|
---|
| 237 | }
|
---|
| 238 | public double PrognosisTrainingWeightedDirectionalSymmetry {
|
---|
| 239 | get {
|
---|
| 240 | if (!ContainsKey(PrognosisTrainingWeightedDirectionalSymmetryResultName)) return double.NaN;
|
---|
| 241 | return ((DoubleValue)this[PrognosisTrainingWeightedDirectionalSymmetryResultName].Value).Value;
|
---|
| 242 | }
|
---|
| 243 | private set {
|
---|
| 244 | if (!ContainsKey(PrognosisTrainingWeightedDirectionalSymmetryResultName)) Add(new Result(PrognosisTrainingWeightedDirectionalSymmetryResultName, PrognosisTrainingWeightedDirectionalSymmetryResultDescription, new DoubleValue()));
|
---|
| 245 | ((DoubleValue)this[PrognosisTrainingWeightedDirectionalSymmetryResultName].Value).Value = value;
|
---|
| 246 | }
|
---|
| 247 | }
|
---|
| 248 | public double PrognosisTestWeightedDirectionalSymmetry {
|
---|
| 249 | get {
|
---|
| 250 | if (!ContainsKey(PrognosisTestWeightedDirectionalSymmetryResultName)) return double.NaN;
|
---|
| 251 | return ((DoubleValue)this[PrognosisTestWeightedDirectionalSymmetryResultName].Value).Value;
|
---|
| 252 | }
|
---|
| 253 | private set {
|
---|
| 254 | if (!ContainsKey(PrognosisTestWeightedDirectionalSymmetryResultName)) Add(new Result(PrognosisTestWeightedDirectionalSymmetryResultName, PrognosisTestWeightedDirectionalSymmetryResultDescription, new DoubleValue()));
|
---|
| 255 | ((DoubleValue)this[PrognosisTestWeightedDirectionalSymmetryResultName].Value).Value = value;
|
---|
| 256 | }
|
---|
| 257 | }
|
---|
| 258 | public double PrognosisTrainingTheilsUStatisticAR1 {
|
---|
| 259 | get {
|
---|
| 260 | if (!ContainsKey(PrognosisTrainingTheilsUStatisticAR1ResultName)) return double.NaN;
|
---|
| 261 | return ((DoubleValue)this[PrognosisTrainingTheilsUStatisticAR1ResultName].Value).Value;
|
---|
| 262 | }
|
---|
| 263 | private set {
|
---|
| 264 | if (!ContainsKey(PrognosisTrainingTheilsUStatisticAR1ResultName)) Add(new Result(PrognosisTrainingTheilsUStatisticAR1ResultName, PrognosisTrainingTheilsUStatisticAR1ResultDescription, new DoubleValue()));
|
---|
| 265 | ((DoubleValue)this[PrognosisTrainingTheilsUStatisticAR1ResultName].Value).Value = value;
|
---|
| 266 | }
|
---|
| 267 | }
|
---|
| 268 | public double PrognosisTestTheilsUStatisticAR1 {
|
---|
| 269 | get {
|
---|
| 270 | if (!ContainsKey(PrognosisTestTheilsUStatisticAR1ResultName)) return double.NaN;
|
---|
| 271 | return ((DoubleValue)this[PrognosisTestTheilsUStatisticAR1ResultName].Value).Value;
|
---|
| 272 | }
|
---|
| 273 | private set {
|
---|
| 274 | if (!ContainsKey(PrognosisTestTheilsUStatisticAR1ResultName)) Add(new Result(PrognosisTestTheilsUStatisticAR1ResultName, PrognosisTestTheilsUStatisticAR1ResultDescription, new DoubleValue()));
|
---|
| 275 | ((DoubleValue)this[PrognosisTestTheilsUStatisticAR1ResultName].Value).Value = value;
|
---|
| 276 | }
|
---|
| 277 | }
|
---|
| 278 | public double PrognosisTrainingTheilsUStatisticMean {
|
---|
| 279 | get {
|
---|
| 280 | if (!ContainsKey(PrognosisTrainingTheilsUStatisticMeanResultName)) return double.NaN;
|
---|
| 281 | return ((DoubleValue)this[PrognosisTrainingTheilsUStatisticMeanResultName].Value).Value;
|
---|
| 282 | }
|
---|
| 283 | private set {
|
---|
| 284 | if (!ContainsKey(PrognosisTrainingTheilsUStatisticMeanResultName)) Add(new Result(PrognosisTrainingTheilsUStatisticMeanResultName, PrognosisTrainingTheilsUStatisticMeanResultDescription, new DoubleValue()));
|
---|
| 285 | ((DoubleValue)this[PrognosisTrainingTheilsUStatisticMeanResultName].Value).Value = value;
|
---|
| 286 | }
|
---|
| 287 | }
|
---|
| 288 | public double PrognosisTestTheilsUStatisticMean {
|
---|
| 289 | get {
|
---|
| 290 | if (!ContainsKey(PrognosisTestTheilsUStatisticMeanResultName)) return double.NaN;
|
---|
| 291 | return ((DoubleValue)this[PrognosisTestTheilsUStatisticMeanResultName].Value).Value;
|
---|
| 292 | }
|
---|
| 293 | private set {
|
---|
| 294 | if (!ContainsKey(PrognosisTestTheilsUStatisticMeanResultName)) Add(new Result(PrognosisTestTheilsUStatisticMeanResultName, PrognosisTestTheilsUStatisticMeanResultDescription, new DoubleValue()));
|
---|
| 295 | ((DoubleValue)this[PrognosisTestTheilsUStatisticMeanResultName].Value).Value = value;
|
---|
| 296 | }
|
---|
| 297 | }
|
---|
| 298 | #endregion
|
---|
| 299 |
|
---|
[8762] | 300 | [Storable]
|
---|
[8750] | 301 | private int trainingHorizon;
|
---|
| 302 | public int TrainingHorizon {
|
---|
| 303 | get { return trainingHorizon; }
|
---|
| 304 | set {
|
---|
| 305 | if (trainingHorizon != value) {
|
---|
| 306 | trainingHorizon = value;
|
---|
| 307 | OnTrainingHorizonChanged();
|
---|
| 308 | }
|
---|
| 309 | }
|
---|
| 310 | }
|
---|
| 311 |
|
---|
[8762] | 312 | [Storable]
|
---|
[8750] | 313 | private int testHorizon;
|
---|
| 314 | public int TestHorizon {
|
---|
| 315 | get { return testHorizon; }
|
---|
| 316 | set {
|
---|
| 317 | if (testHorizon != value) {
|
---|
| 318 | testHorizon = value;
|
---|
| 319 | OnTestHorizonChanged();
|
---|
| 320 | }
|
---|
| 321 | }
|
---|
| 322 | }
|
---|
| 323 |
|
---|
| 324 | private ITimeSeriesPrognosisSolution solution;
|
---|
| 325 | [Storable]
|
---|
| 326 | public ITimeSeriesPrognosisSolution Solution {
|
---|
| 327 | get { return solution; }
|
---|
[8762] | 328 | private set { solution = value; } //necessary for persistence
|
---|
[8750] | 329 | }
|
---|
| 330 |
|
---|
| 331 | [StorableConstructor]
|
---|
| 332 | public TimeSeriesPrognosisResults(bool deserializing) : base(deserializing) { }
|
---|
[9004] | 333 | protected TimeSeriesPrognosisResults(TimeSeriesPrognosisResults original, Cloner cloner)
|
---|
| 334 | : base(original, cloner) {
|
---|
| 335 | this.trainingHorizon = original.trainingHorizon;
|
---|
| 336 | this.testHorizon = original.testHorizon;
|
---|
| 337 | this.solution = cloner.Clone(original.solution);
|
---|
| 338 | }
|
---|
[8750] | 339 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
| 340 | return new TimeSeriesPrognosisResults(this, cloner);
|
---|
| 341 | }
|
---|
| 342 |
|
---|
| 343 | public TimeSeriesPrognosisResults(int trainingHorizon, int testHorizon, ITimeSeriesPrognosisSolution solution)
|
---|
| 344 | : base() {
|
---|
| 345 | this.trainingHorizon = trainingHorizon;
|
---|
| 346 | this.testHorizon = testHorizon;
|
---|
| 347 | this.solution = solution;
|
---|
| 348 | CalculateTrainingPrognosisResults();
|
---|
| 349 | CalculateTestPrognosisResults();
|
---|
| 350 | }
|
---|
| 351 |
|
---|
| 352 | #region events
|
---|
| 353 | public event EventHandler TrainingHorizonChanged;
|
---|
| 354 | protected virtual void OnTrainingHorizonChanged() {
|
---|
| 355 | CalculateTrainingPrognosisResults();
|
---|
| 356 | var handler = TrainingHorizonChanged;
|
---|
| 357 | if (handler != null) handler(this, EventArgs.Empty);
|
---|
| 358 | }
|
---|
| 359 |
|
---|
| 360 | public event EventHandler TestHorizonChanged;
|
---|
| 361 | protected virtual void OnTestHorizonChanged() {
|
---|
| 362 | CalculateTestPrognosisResults();
|
---|
| 363 | var handler = TestHorizonChanged;
|
---|
| 364 | if (handler != null) handler(this, EventArgs.Empty);
|
---|
| 365 | }
|
---|
| 366 | #endregion
|
---|
| 367 |
|
---|
| 368 | private void CalculateTrainingPrognosisResults() {
|
---|
| 369 | OnlineCalculatorError errorState;
|
---|
| 370 | var problemData = Solution.ProblemData;
|
---|
[11031] | 371 | if (!problemData.TrainingIndices.Any()) return;
|
---|
[8750] | 372 | var model = Solution.Model;
|
---|
| 373 | //mean model
|
---|
| 374 | double trainingMean = problemData.Dataset.GetDoubleValues(problemData.TargetVariable, problemData.TrainingIndices).Average();
|
---|
[14000] | 375 | var meanModel = new ConstantModel(trainingMean, problemData.TargetVariable);
|
---|
[8750] | 376 |
|
---|
| 377 | //AR1 model
|
---|
| 378 | double alpha, beta;
|
---|
| 379 | IEnumerable<double> trainingStartValues = problemData.Dataset.GetDoubleValues(problemData.TargetVariable, problemData.TrainingIndices.Select(r => r - 1).Where(r => r > 0)).ToList();
|
---|
| 380 | OnlineLinearScalingParameterCalculator.Calculate(problemData.Dataset.GetDoubleValues(problemData.TargetVariable, problemData.TrainingIndices.Where(x => x > 0)), trainingStartValues, out alpha, out beta, out errorState);
|
---|
| 381 | var AR1model = new TimeSeriesPrognosisAutoRegressiveModel(problemData.TargetVariable, new double[] { beta }, alpha);
|
---|
| 382 |
|
---|
| 383 | var trainingHorizions = problemData.TrainingIndices.Select(r => Math.Min(trainingHorizon, problemData.TrainingPartition.End - r)).ToList();
|
---|
| 384 | IEnumerable<IEnumerable<double>> trainingTargetValues = problemData.TrainingIndices.Zip(trainingHorizions, Enumerable.Range).Select(r => problemData.Dataset.GetDoubleValues(problemData.TargetVariable, r)).ToList();
|
---|
| 385 | IEnumerable<IEnumerable<double>> trainingEstimatedValues = model.GetPrognosedValues(problemData.Dataset, problemData.TrainingIndices, trainingHorizions).ToList();
|
---|
| 386 | IEnumerable<IEnumerable<double>> trainingMeanModelPredictions = meanModel.GetPrognosedValues(problemData.Dataset, problemData.TrainingIndices, trainingHorizions).ToList();
|
---|
| 387 | IEnumerable<IEnumerable<double>> trainingAR1ModelPredictions = AR1model.GetPrognosedValues(problemData.Dataset, problemData.TrainingIndices, trainingHorizions).ToList();
|
---|
| 388 |
|
---|
| 389 | IEnumerable<double> originalTrainingValues = trainingTargetValues.SelectMany(x => x).ToList();
|
---|
| 390 | IEnumerable<double> estimatedTrainingValues = trainingEstimatedValues.SelectMany(x => x).ToList();
|
---|
| 391 |
|
---|
| 392 | double trainingMSE = OnlineMeanSquaredErrorCalculator.Calculate(originalTrainingValues, estimatedTrainingValues, out errorState);
|
---|
| 393 | PrognosisTrainingMeanSquaredError = errorState == OnlineCalculatorError.None ? trainingMSE : double.NaN;
|
---|
| 394 | double trainingMAE = OnlineMeanAbsoluteErrorCalculator.Calculate(originalTrainingValues, estimatedTrainingValues, out errorState);
|
---|
| 395 | PrognosisTrainingMeanAbsoluteError = errorState == OnlineCalculatorError.None ? trainingMAE : double.NaN;
|
---|
[12641] | 396 | double trainingR = OnlinePearsonsRCalculator.Calculate(originalTrainingValues, estimatedTrainingValues, out errorState);
|
---|
[14000] | 397 | PrognosisTrainingRSquared = errorState == OnlineCalculatorError.None ? trainingR * trainingR : double.NaN;
|
---|
[8750] | 398 | double trainingRelError = OnlineMeanAbsolutePercentageErrorCalculator.Calculate(originalTrainingValues, estimatedTrainingValues, out errorState);
|
---|
| 399 | PrognosisTrainingRelativeError = errorState == OnlineCalculatorError.None ? trainingRelError : double.NaN;
|
---|
| 400 | double trainingNMSE = OnlineNormalizedMeanSquaredErrorCalculator.Calculate(originalTrainingValues, estimatedTrainingValues, out errorState);
|
---|
| 401 | PrognosisTrainingNormalizedMeanSquaredError = errorState == OnlineCalculatorError.None ? trainingNMSE : double.NaN;
|
---|
| 402 | double trainingME = OnlineMeanErrorCalculator.Calculate(originalTrainingValues, estimatedTrainingValues, out errorState);
|
---|
| 403 | PrognosisTrainingMeanError = errorState == OnlineCalculatorError.None ? trainingME : double.NaN;
|
---|
| 404 |
|
---|
| 405 | PrognosisTrainingDirectionalSymmetry = OnlineDirectionalSymmetryCalculator.Calculate(trainingStartValues, trainingTargetValues, trainingEstimatedValues, out errorState);
|
---|
| 406 | PrognosisTrainingDirectionalSymmetry = errorState == OnlineCalculatorError.None ? PrognosisTrainingDirectionalSymmetry : 0.0;
|
---|
| 407 | PrognosisTrainingWeightedDirectionalSymmetry = OnlineWeightedDirectionalSymmetryCalculator.Calculate(trainingStartValues, trainingTargetValues, trainingEstimatedValues, out errorState);
|
---|
| 408 | PrognosisTrainingWeightedDirectionalSymmetry = errorState == OnlineCalculatorError.None ? PrognosisTrainingWeightedDirectionalSymmetry : 0.0;
|
---|
| 409 | PrognosisTrainingTheilsUStatisticAR1 = OnlineTheilsUStatisticCalculator.Calculate(trainingStartValues, trainingTargetValues, trainingAR1ModelPredictions, trainingEstimatedValues, out errorState);
|
---|
| 410 | PrognosisTrainingTheilsUStatisticAR1 = errorState == OnlineCalculatorError.None ? PrognosisTrainingTheilsUStatisticAR1 : double.PositiveInfinity;
|
---|
| 411 | PrognosisTrainingTheilsUStatisticMean = OnlineTheilsUStatisticCalculator.Calculate(trainingStartValues, trainingTargetValues, trainingMeanModelPredictions, trainingEstimatedValues, out errorState);
|
---|
| 412 | PrognosisTrainingTheilsUStatisticMean = errorState == OnlineCalculatorError.None ? PrognosisTrainingTheilsUStatisticMean : double.PositiveInfinity;
|
---|
| 413 | }
|
---|
| 414 |
|
---|
| 415 | private void CalculateTestPrognosisResults() {
|
---|
| 416 | OnlineCalculatorError errorState;
|
---|
| 417 | var problemData = Solution.ProblemData;
|
---|
[11031] | 418 | if (!problemData.TestIndices.Any()) return;
|
---|
[8750] | 419 | var model = Solution.Model;
|
---|
| 420 | var testHorizions = problemData.TestIndices.Select(r => Math.Min(testHorizon, problemData.TestPartition.End - r)).ToList();
|
---|
| 421 | IEnumerable<IEnumerable<double>> testTargetValues = problemData.TestIndices.Zip(testHorizions, Enumerable.Range).Select(r => problemData.Dataset.GetDoubleValues(problemData.TargetVariable, r)).ToList();
|
---|
| 422 | IEnumerable<IEnumerable<double>> testEstimatedValues = model.GetPrognosedValues(problemData.Dataset, problemData.TestIndices, testHorizions).ToList();
|
---|
| 423 | IEnumerable<double> testStartValues = problemData.Dataset.GetDoubleValues(problemData.TargetVariable, problemData.TestIndices.Select(r => r - 1).Where(r => r > 0)).ToList();
|
---|
| 424 |
|
---|
| 425 | IEnumerable<double> originalTestValues = testTargetValues.SelectMany(x => x).ToList();
|
---|
| 426 | IEnumerable<double> estimatedTestValues = testEstimatedValues.SelectMany(x => x).ToList();
|
---|
| 427 |
|
---|
| 428 | double testMSE = OnlineMeanSquaredErrorCalculator.Calculate(originalTestValues, estimatedTestValues, out errorState);
|
---|
| 429 | PrognosisTestMeanSquaredError = errorState == OnlineCalculatorError.None ? testMSE : double.NaN;
|
---|
| 430 | double testMAE = OnlineMeanAbsoluteErrorCalculator.Calculate(originalTestValues, estimatedTestValues, out errorState);
|
---|
| 431 | PrognosisTestMeanAbsoluteError = errorState == OnlineCalculatorError.None ? testMAE : double.NaN;
|
---|
[12641] | 432 | double testR = OnlinePearsonsRCalculator.Calculate(originalTestValues, estimatedTestValues, out errorState);
|
---|
[14000] | 433 | PrognosisTestRSquared = errorState == OnlineCalculatorError.None ? testR * testR : double.NaN;
|
---|
[8750] | 434 | double testRelError = OnlineMeanAbsolutePercentageErrorCalculator.Calculate(originalTestValues, estimatedTestValues, out errorState);
|
---|
| 435 | PrognosisTestRelativeError = errorState == OnlineCalculatorError.None ? testRelError : double.NaN;
|
---|
| 436 | double testNMSE = OnlineNormalizedMeanSquaredErrorCalculator.Calculate(originalTestValues, estimatedTestValues, out errorState);
|
---|
| 437 | PrognosisTestNormalizedMeanSquaredError = errorState == OnlineCalculatorError.None ? testNMSE : double.NaN;
|
---|
| 438 | double testME = OnlineMeanErrorCalculator.Calculate(originalTestValues, estimatedTestValues, out errorState);
|
---|
| 439 | PrognosisTestMeanError = errorState == OnlineCalculatorError.None ? testME : double.NaN;
|
---|
| 440 |
|
---|
| 441 | PrognosisTestDirectionalSymmetry = OnlineDirectionalSymmetryCalculator.Calculate(testStartValues, testTargetValues, testEstimatedValues, out errorState);
|
---|
| 442 | PrognosisTestDirectionalSymmetry = errorState == OnlineCalculatorError.None ? PrognosisTestDirectionalSymmetry : 0.0;
|
---|
| 443 | PrognosisTestWeightedDirectionalSymmetry = OnlineWeightedDirectionalSymmetryCalculator.Calculate(testStartValues, testTargetValues, testEstimatedValues, out errorState);
|
---|
| 444 | PrognosisTestWeightedDirectionalSymmetry = errorState == OnlineCalculatorError.None ? PrognosisTestWeightedDirectionalSymmetry : 0.0;
|
---|
[11031] | 445 |
|
---|
| 446 |
|
---|
| 447 | if (problemData.TrainingIndices.Any()) {
|
---|
| 448 | //mean model
|
---|
| 449 | double trainingMean = problemData.Dataset.GetDoubleValues(problemData.TargetVariable, problemData.TrainingIndices).Average();
|
---|
[14000] | 450 | var meanModel = new ConstantModel(trainingMean, problemData.TargetVariable);
|
---|
[11031] | 451 |
|
---|
| 452 | //AR1 model
|
---|
| 453 | double alpha, beta;
|
---|
| 454 | IEnumerable<double> trainingStartValues = problemData.Dataset.GetDoubleValues(problemData.TargetVariable, problemData.TrainingIndices.Select(r => r - 1).Where(r => r > 0)).ToList();
|
---|
| 455 | OnlineLinearScalingParameterCalculator.Calculate(problemData.Dataset.GetDoubleValues(problemData.TargetVariable, problemData.TrainingIndices.Where(x => x > 0)), trainingStartValues, out alpha, out beta, out errorState);
|
---|
| 456 | var AR1model = new TimeSeriesPrognosisAutoRegressiveModel(problemData.TargetVariable, new double[] { beta }, alpha);
|
---|
| 457 |
|
---|
| 458 | IEnumerable<IEnumerable<double>> testMeanModelPredictions = meanModel.GetPrognosedValues(problemData.Dataset, problemData.TestIndices, testHorizions).ToList();
|
---|
| 459 | IEnumerable<IEnumerable<double>> testAR1ModelPredictions = AR1model.GetPrognosedValues(problemData.Dataset, problemData.TestIndices, testHorizions).ToList();
|
---|
| 460 |
|
---|
| 461 | PrognosisTestTheilsUStatisticAR1 = OnlineTheilsUStatisticCalculator.Calculate(testStartValues, testTargetValues, testAR1ModelPredictions, testEstimatedValues, out errorState);
|
---|
| 462 | PrognosisTestTheilsUStatisticAR1 = errorState == OnlineCalculatorError.None ? PrognosisTestTheilsUStatisticAR1 : double.PositiveInfinity;
|
---|
| 463 | PrognosisTestTheilsUStatisticMean = OnlineTheilsUStatisticCalculator.Calculate(testStartValues, testTargetValues, testMeanModelPredictions, testEstimatedValues, out errorState);
|
---|
| 464 | PrognosisTestTheilsUStatisticMean = errorState == OnlineCalculatorError.None ? PrognosisTestTheilsUStatisticMean : double.PositiveInfinity;
|
---|
| 465 | }
|
---|
[8750] | 466 | }
|
---|
| 467 | }
|
---|
| 468 | }
|
---|