[15125] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
[16057] | 3 | * Copyright (C) 2002-2018 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
[15125] | 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
| 23 | using System.Collections.Generic;
|
---|
| 24 | using System.Linq;
|
---|
| 25 |
|
---|
| 26 | namespace HeuristicLab.Common {
|
---|
| 27 | public class EmpiricalCumulativeDistributionFunction {
|
---|
| 28 | private static readonly AbscissaComparer abscissaComparer = new AbscissaComparer();
|
---|
| 29 | private static readonly OrdinateComparer ordinateComparer = new OrdinateComparer();
|
---|
| 30 |
|
---|
| 31 | private List<Point2D<double>> ecdf;
|
---|
| 32 | public IEnumerable<Point2D<double>> SupportingPoints {
|
---|
| 33 | get { return ecdf; }
|
---|
| 34 | }
|
---|
| 35 |
|
---|
| 36 | public EmpiricalCumulativeDistributionFunction(IList<double> sample) {
|
---|
| 37 | ecdf = new List<Point2D<double>>();
|
---|
| 38 |
|
---|
| 39 | var len = sample.Count;
|
---|
| 40 | var cumulative = 0;
|
---|
| 41 | var localcumulative = 0;
|
---|
| 42 | var prev = double.NaN;
|
---|
| 43 | foreach (var p in sample.OrderBy(x => x)) {
|
---|
| 44 | if (double.IsNaN(p) || double.IsInfinity(p)) continue;
|
---|
| 45 | if (!double.IsNaN(prev) && prev < p) {
|
---|
| 46 | cumulative += localcumulative;
|
---|
| 47 | localcumulative = 0;
|
---|
| 48 | ecdf.Add(Point2D<double>.Create(prev, cumulative / (double)len));
|
---|
| 49 | }
|
---|
| 50 | prev = p;
|
---|
| 51 | localcumulative++;
|
---|
| 52 | }
|
---|
| 53 | if (!double.IsNaN(prev)) {
|
---|
| 54 | cumulative += localcumulative;
|
---|
| 55 | ecdf.Add(Point2D<double>.Create(prev, cumulative / (double)len));
|
---|
| 56 | }
|
---|
| 57 | }
|
---|
| 58 | public EmpiricalCumulativeDistributionFunction(IEnumerable<Point2D<double>> ecdf) {
|
---|
| 59 | this.ecdf = new List<Point2D<double>>();
|
---|
| 60 | var prev = Point2D<double>.Empty;
|
---|
| 61 | foreach (var point in ecdf) {
|
---|
| 62 | if (point.Y < 0 || point.Y > 1 || double.IsNaN(point.X) || double.IsInfinity(point.X)
|
---|
| 63 | || point.IsEmpty || (!prev.IsEmpty && (point.X <= prev.X || point.Y <= prev.Y)))
|
---|
| 64 | throw new ArgumentException("Invalid supporting points of a cumulative distribution function. Must be strictly monotonically increasing in both X and Y with X in R and Y in [0;1].", "ecdf");
|
---|
| 65 |
|
---|
| 66 | this.ecdf.Add(point);
|
---|
| 67 | prev = point;
|
---|
| 68 | }
|
---|
| 69 | }
|
---|
| 70 |
|
---|
| 71 | public double Evaluate(double x) {
|
---|
| 72 | if (ecdf.Count == 0) return double.NaN;
|
---|
| 73 | if (x < ecdf[0].X) return 0;
|
---|
| 74 | var last = ecdf[ecdf.Count - 1];
|
---|
| 75 | if (x >= last.X) return last.Y;
|
---|
| 76 |
|
---|
| 77 | var index = ecdf.BinarySearch(Point2D<double>.Create(x, 0), abscissaComparer);
|
---|
| 78 | if (index >= 0) return ecdf[index].Y;
|
---|
| 79 | return ecdf[~index - 1].Y;
|
---|
| 80 | }
|
---|
| 81 |
|
---|
| 82 | public double InterpolateLinear(double x) {
|
---|
| 83 | if (ecdf.Count == 0) return double.NaN;
|
---|
| 84 | if (x < ecdf[0].X) return 0;
|
---|
| 85 | var last = ecdf[ecdf.Count - 1];
|
---|
| 86 | if (x >= last.X) return last.Y;
|
---|
| 87 |
|
---|
| 88 | var index = ecdf.BinarySearch(Point2D<double>.Create(x, 0), abscissaComparer);
|
---|
| 89 | if (index >= 0) return ecdf[index].Y;
|
---|
| 90 | var prev = ecdf[~index - 1];
|
---|
| 91 | var next = ecdf[~index];
|
---|
| 92 | return prev.Y + (next.Y - prev.Y) * ((x - prev.X) / (next.X - prev.X));
|
---|
| 93 | }
|
---|
| 94 |
|
---|
| 95 | public double InterpolateNearest(double x) {
|
---|
| 96 | if (ecdf.Count == 0) return double.NaN;
|
---|
| 97 | if (x < ecdf[0].X) return 0;
|
---|
| 98 | var last = ecdf[ecdf.Count - 1];
|
---|
| 99 | if (x >= last.X) return last.Y;
|
---|
| 100 |
|
---|
| 101 | var index = ecdf.BinarySearch(Point2D<double>.Create(x, 0), abscissaComparer);
|
---|
| 102 | if (index >= 0) return ecdf[index].Y;
|
---|
| 103 | var prev = ecdf[~index - 1];
|
---|
| 104 | var next = ecdf[~index];
|
---|
| 105 | if (x - prev.X < next.X - x) return prev.Y;
|
---|
| 106 | return next.Y;
|
---|
| 107 | }
|
---|
| 108 |
|
---|
| 109 | public double Inverse(double y) {
|
---|
| 110 | if (ecdf.Count == 0) return double.NaN;
|
---|
| 111 | if (y < 0 || y > 1) throw new ArgumentException("parameter must be in interval [0;1]", "y");
|
---|
| 112 | if (ecdf[ecdf.Count - 1].Y < y) return double.PositiveInfinity;
|
---|
| 113 | var index = ecdf.BinarySearch(Point2D<double>.Create(0, y), ordinateComparer);
|
---|
| 114 | if (index >= 0) return ecdf[index].X;
|
---|
| 115 | return ecdf[Math.Max(~index - 1, 0)].X;
|
---|
| 116 | }
|
---|
| 117 |
|
---|
| 118 | private class AbscissaComparer : Comparer<Point2D<double>> {
|
---|
| 119 | public override int Compare(Point2D<double> x, Point2D<double> y) {
|
---|
| 120 | return x.X.CompareTo(y.X);
|
---|
| 121 | }
|
---|
| 122 | }
|
---|
| 123 |
|
---|
| 124 | private class OrdinateComparer : Comparer<Point2D<double>> {
|
---|
| 125 | public override int Compare(Point2D<double> x, Point2D<double> y) {
|
---|
| 126 | return x.Y.CompareTo(y.Y);
|
---|
| 127 | }
|
---|
| 128 | }
|
---|
| 129 | }
|
---|
| 130 | }
|
---|