Free cookie consent management tool by TermsFeed Policy Generator
close Warning: Can't use blame annotator:
svn blame failed on branches/2839_HiveProjectManagement/HeuristicLab.Algorithms.OffspringSelectionEvolutionStrategy/3.3/OffspringSelectionEvolutionStrategyMainLoop.cs: 195004 - Cannot calculate blame information for binary file 'file:///var/www/vhosts/heuristiclab.com/svn/core/branches/2839_HiveProjectManagement/HeuristicLab.Algorithms.OffspringSelectionEvolutionStrategy/3.3/OffspringSelectionEvolutionStrategyMainLoop.cs'

source: branches/2839_HiveProjectManagement/HeuristicLab.Algorithms.OffspringSelectionEvolutionStrategy/3.3/OffspringSelectionEvolutionStrategyMainLoop.cs @ 16713

Last change on this file since 16713 was 16057, checked in by jkarder, 6 years ago

#2839:

  • Property svn:mime-type set to application/octet-stream
File size: 48.0 KB
RevLine 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2018 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using HeuristicLab.Common;
23using HeuristicLab.Core;
24using HeuristicLab.Data;
25using HeuristicLab.Operators;
26using HeuristicLab.Optimization.Operators;
27using HeuristicLab.Parameters;
28using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
29using HeuristicLab.Selection;
30
31namespace HeuristicLab.Algorithms.OffspringSelectionEvolutionStrategy {
32  /// <summary>
33  /// An operator which represents the main loop of an evolution strategy (OffspringSelectionEvolutionStrategy).
34  /// </summary>
35  [Item("OffspringSelectionEvolutionStrategyMainLoop", "An operator which represents the main loop of an evolution strategy with offspring selection (OffspringSelectionEvolutionStrategy).")]
36  [StorableClass]
37  public sealed class OffspringSelectionEvolutionStrategyMainLoop : AlgorithmOperator {
38    #region Parameter properties
39    public ValueLookupParameter<IRandom> RandomParameter {
40      get { return (ValueLookupParameter<IRandom>)Parameters["Random"]; }
41    }
42    public ValueLookupParameter<BoolValue> MaximizationParameter {
43      get { return (ValueLookupParameter<BoolValue>)Parameters["Maximization"]; }
44    }
45    public ScopeTreeLookupParameter<DoubleValue> QualityParameter {
46      get { return (ScopeTreeLookupParameter<DoubleValue>)Parameters["Quality"]; }
47    }
48    public ValueLookupParameter<DoubleValue> BestKnownQualityParameter {
49      get { return (ValueLookupParameter<DoubleValue>)Parameters["BestKnownQuality"]; }
50    }
51    public ValueLookupParameter<IntValue> PopulationSizeParameter {
52      get { return (ValueLookupParameter<IntValue>)Parameters["PopulationSize"]; }
53    }
54    public ValueLookupParameter<IntValue> ParentsPerChildParameter {
55      get { return (ValueLookupParameter<IntValue>)Parameters["ParentsPerChild"]; }
56    }
57    public ValueLookupParameter<BoolValue> PlusSelectionParameter {
58      get { return (ValueLookupParameter<BoolValue>)Parameters["PlusSelection"]; }
59    }
60    public IValueLookupParameter<BoolValue> ReevaluateElitesParameter {
61      get { return (IValueLookupParameter<BoolValue>)Parameters["ReevaluateElites"]; }
62    }
63    public ValueLookupParameter<IntValue> MaximumGenerationsParameter {
64      get { return (ValueLookupParameter<IntValue>)Parameters["MaximumGenerations"]; }
65    }
66    public ValueLookupParameter<IOperator> MutatorParameter {
67      get { return (ValueLookupParameter<IOperator>)Parameters["Mutator"]; }
68    }
69    public ValueLookupParameter<IOperator> RecombinatorParameter {
70      get { return (ValueLookupParameter<IOperator>)Parameters["Recombinator"]; }
71    }
72    public ValueLookupParameter<IOperator> EvaluatorParameter {
73      get { return (ValueLookupParameter<IOperator>)Parameters["Evaluator"]; }
74    }
75    public ValueLookupParameter<VariableCollection> ResultsParameter {
76      get { return (ValueLookupParameter<VariableCollection>)Parameters["Results"]; }
77    }
78    public ValueLookupParameter<IOperator> AnalyzerParameter {
79      get { return (ValueLookupParameter<IOperator>)Parameters["Analyzer"]; }
80    }
81    public LookupParameter<IntValue> EvaluatedSolutionsParameter {
82      get { return (LookupParameter<IntValue>)Parameters["EvaluatedSolutions"]; }
83    }
84    private ScopeParameter CurrentScopeParameter {
85      get { return (ScopeParameter)Parameters["CurrentScope"]; }
86    }
87    private ValueLookupParameter<IOperator> StrategyParameterManipulatorParameter {
88      get { return (ValueLookupParameter<IOperator>)Parameters["StrategyParameterManipulator"]; }
89    }
90    private ValueLookupParameter<IOperator> StrategyParameterCrossoverParameter {
91      get { return (ValueLookupParameter<IOperator>)Parameters["StrategyParameterCrossover"]; }
92    }
93
94    public LookupParameter<DoubleValue> CurrentSuccessRatioParameter {
95      get { return (LookupParameter<DoubleValue>)Parameters["CurrentSuccessRatio"]; }
96    }
97    public LookupParameter<DoubleValue> SelectionPressureParameter {
98      get { return (LookupParameter<DoubleValue>)Parameters["SelectionPressure"]; }
99    }
100    public ValueLookupParameter<DoubleValue> SuccessRatioParameter {
101       get { return (ValueLookupParameter<DoubleValue>)Parameters["SuccessRatio"]; }
102    }
103    public ValueLookupParameter<DoubleValue> MaximumSelectionPressureParameter {
104      get { return (ValueLookupParameter<DoubleValue>)Parameters["MaximumSelectionPressure"]; }
105    }
106    public ValueLookupParameter<IntValue> MaximumEvaluatedSolutionsParameter {
107      get { return (ValueLookupParameter<IntValue>)Parameters["MaximumEvaluatedSolutions"]; }
108    }
109    public ValueLookupParameter<IntValue> SelectedParentsParameter {
110      get { return (ValueLookupParameter<IntValue>)Parameters["SelectedParents"]; }
111    }
112    public LookupParameter<DoubleValue> ComparisonFactorParameter {
113      get { return (LookupParameter<DoubleValue>)Parameters["ComparisonFactor"]; }
114    }
115
116    public IScope CurrentScope {
117      get { return CurrentScopeParameter.ActualValue; }
118    }
119    #endregion
120
121    [StorableConstructor]
122    private OffspringSelectionEvolutionStrategyMainLoop(bool deserializing) : base(deserializing) { }
123    private OffspringSelectionEvolutionStrategyMainLoop(OffspringSelectionEvolutionStrategyMainLoop original, Cloner cloner)
124      : base(original, cloner) {
125    }
126    public override IDeepCloneable Clone(Cloner cloner) {
127      return new OffspringSelectionEvolutionStrategyMainLoop(this, cloner);
128    }
129    public OffspringSelectionEvolutionStrategyMainLoop()
130      : base() {
131      Initialize();
132    }
133
134    [StorableHook(HookType.AfterDeserialization)]
135    private void AfterDeserialization() {
136    }
137
138    private void Initialize() {
139      #region Create parameters
140      Parameters.Add(new ValueLookupParameter<IRandom>("Random", "A pseudo random number generator."));
141      Parameters.Add(new ValueLookupParameter<BoolValue>("Maximization", "True if the problem is a maximization problem, otherwise false."));
142      Parameters.Add(new ScopeTreeLookupParameter<DoubleValue>("Quality", "The value which represents the quality of a solution."));
143      Parameters.Add(new ValueLookupParameter<DoubleValue>("BestKnownQuality", "The best known quality value found so far."));
144      Parameters.Add(new ValueLookupParameter<IntValue>("PopulationSize", "µ (mu) - the size of the population."));
145      Parameters.Add(new ValueLookupParameter<IntValue>("ParentsPerChild", "ρ (rho) - how many parents should be recombined."));
146      Parameters.Add(new ValueLookupParameter<IntValue>("MaximumGenerations", "The maximum number of generations which should be processed."));
147      Parameters.Add(new ValueLookupParameter<BoolValue>("PlusSelection", "True for plus selection (elitist population), false for comma selection (non-elitist population)."));
148      Parameters.Add(new ValueLookupParameter<BoolValue>("ReevaluateElites", "Flag to determine if elite individuals should be reevaluated (i.e., if stochastic fitness functions are used.)"));
149      Parameters.Add(new ValueLookupParameter<IOperator>("Mutator", "The operator used to mutate solutions."));
150      Parameters.Add(new ValueLookupParameter<IOperator>("Recombinator", "The operator used to cross solutions."));
151      Parameters.Add(new ValueLookupParameter<IOperator>("Evaluator", "The operator used to evaluate solutions. This operator is executed in parallel, if an engine is used which supports parallelization."));
152      Parameters.Add(new ValueLookupParameter<VariableCollection>("Results", "The variable collection where results should be stored."));
153      Parameters.Add(new ValueLookupParameter<IOperator>("Analyzer", "The operator used to analyze each generation."));
154      Parameters.Add(new LookupParameter<IntValue>("EvaluatedSolutions", "The number of times solutions have been evaluated."));
155      Parameters.Add(new ScopeParameter("CurrentScope", "The current scope which represents a population of solutions on which the OffspringSelectionEvolutionStrategy should be applied."));
156      Parameters.Add(new ValueLookupParameter<IOperator>("StrategyParameterManipulator", "The operator to mutate the endogeneous strategy parameters."));
157      Parameters.Add(new ValueLookupParameter<IOperator>("StrategyParameterCrossover", "The operator to cross the endogeneous strategy parameters."));
158     
159      Parameters.Add(new LookupParameter<DoubleValue>("CurrentSuccessRatio", "The current success ratio."));
160      Parameters.Add(new ValueLookupParameter<DoubleValue>("SuccessRatio", "The ratio of successful to total children that should be achieved."));
161      Parameters.Add(new LookupParameter<DoubleValue>("SelectionPressure", "The actual selection pressure."));
162      Parameters.Add(new ValueLookupParameter<DoubleValue>("MaximumSelectionPressure", "The maximum selection pressure that terminates the algorithm."));
163      Parameters.Add(new ValueLookupParameter<IntValue>("MaximumEvaluatedSolutions", "The maximum number of evaluated solutions."));
164      Parameters.Add(new ValueLookupParameter<IntValue>("SelectedParents", "How much parents should be selected each time the offspring selection step is performed until the population is filled. This parameter should be about the same or twice the size of PopulationSize for smaller problems, and less for large problems."));
165      Parameters.Add(new LookupParameter<DoubleValue>("ComparisonFactor", "The comparison factor is used to determine whether the offspring should be compared to the better parent, the worse parent or a quality value linearly interpolated between them. It is in the range [0;1]."));
166
167      #endregion
168
169      #region Create operators
170      VariableCreator variableCreator = new VariableCreator();
171      ResultsCollector resultsCollector1 = new ResultsCollector();
172      Placeholder analyzer1 = new Placeholder();
173      WithoutRepeatingBatchedRandomSelector selector = new WithoutRepeatingBatchedRandomSelector();
174      SubScopesProcessor subScopesProcessor1 = new SubScopesProcessor();
175      Comparator useRecombinationComparator = new Comparator();
176      ConditionalBranch useRecombinationBranch = new ConditionalBranch();
177      ChildrenCreator childrenCreator = new ChildrenCreator();
178      UniformSubScopesProcessor uniformSubScopesProcessor1 = new UniformSubScopesProcessor();
179      Placeholder recombinator = new Placeholder();
180      Placeholder strategyRecombinator = new Placeholder();
181      Placeholder strategyMutator1 = new Placeholder();
182      Placeholder mutator1 = new Placeholder();
183      SubScopesRemover subScopesRemover = new SubScopesRemover();
184      UniformSubScopesProcessor uniformSubScopesProcessor2 = new UniformSubScopesProcessor();
185      Placeholder strategyMutator2 = new Placeholder();
186      Placeholder mutator2 = new Placeholder();
187      UniformSubScopesProcessor uniformSubScopesProcessor3 = new UniformSubScopesProcessor();
188      Placeholder evaluator = new Placeholder();
189      SubScopesCounter subScopesCounter = new SubScopesCounter();
190      ConditionalBranch plusOrCommaReplacementBranch = new ConditionalBranch();
191      MergingReducer plusReplacement = new MergingReducer();
192      RightReducer commaReplacement = new RightReducer();
193      BestSelector bestSelector = new BestSelector();
194      RightReducer rightReducer = new RightReducer();
195      IntCounter intCounter = new IntCounter();
196      Comparator maxGenerationsComparator = new Comparator();
197      Placeholder analyzer2 = new Placeholder();
198      ConditionalBranch conditionalBranchTerminate = new ConditionalBranch();
199      ConditionalBranch reevaluateElitesBranch = new ConditionalBranch();
200      SubScopesProcessor subScopesProcessor2 = new SubScopesProcessor();
201      UniformSubScopesProcessor uniformSubScopesProcessor4 = new UniformSubScopesProcessor();
202      Placeholder evaluator2 = new Placeholder();
203      SubScopesCounter subScopesCounter2 = new SubScopesCounter();
204      WeightedParentsQualityComparator parentsComparator = new WeightedParentsQualityComparator();
205      SubScopesRemover subScopesRemover_afterCompare = new SubScopesRemover();
206      EvolutionStrategyOffspringSelector offspringSelector = new EvolutionStrategyOffspringSelector();
207      ChildrenCopyCreator childrenCopyCreator = new ChildrenCopyCreator();
208      Comparator maxSelectionPressureComparator = new Comparator();
209      ConditionalBranch conditionalBranchTerminateSelPressure = new ConditionalBranch();
210      Comparator maxEvaluatedSolutionsComparator = new Comparator();
211      ConditionalBranch conditionalBranchTerminateEvalSolutions = new ConditionalBranch();
212
213      variableCreator.CollectedValues.Add(new ValueParameter<IntValue>("Generations", new IntValue(0))); // Class OffspringSelectionEvolutionStrategy expects this to be called Generations
214      variableCreator.CollectedValues.Add(new ValueParameter<DoubleValue>("SelectionPressure", new DoubleValue(0)));
215      variableCreator.CollectedValues.Add(new ValueParameter<DoubleValue>("CurrentSuccessRatio", new DoubleValue(0)));
216
217      resultsCollector1.CollectedValues.Add(new LookupParameter<IntValue>("Generations"));
218      resultsCollector1.CollectedValues.Add(new LookupParameter<DoubleValue>("Current Selection Pressure", "Displays the rising selection pressure during a generation.", "SelectionPressure"));
219      resultsCollector1.CollectedValues.Add(new LookupParameter<DoubleValue>("Current Success Ratio", "Indicates how many successful children were already found during a generation (relative to the population size).", "CurrentSuccessRatio"));
220      resultsCollector1.CopyValue = new BoolValue(false);
221      resultsCollector1.ResultsParameter.ActualName = ResultsParameter.Name;
222
223      analyzer1.Name = "Analyzer (placeholder)";
224      analyzer1.OperatorParameter.ActualName = AnalyzerParameter.Name;
225
226      selector.Name = "ES Random Selector";
227      selector.RandomParameter.ActualName = RandomParameter.Name;
228      selector.ParentsPerChildParameter.ActualName = ParentsPerChildParameter.Name;
229      selector.ChildrenParameter.ActualName = SelectedParentsParameter.Name;
230
231      useRecombinationComparator.Name = "ParentsPerChild > 1";
232      useRecombinationComparator.LeftSideParameter.ActualName = ParentsPerChildParameter.Name;
233      useRecombinationComparator.RightSideParameter.Value = new IntValue(1);
234      useRecombinationComparator.Comparison = new Comparison(ComparisonType.Greater);
235      useRecombinationComparator.ResultParameter.ActualName = "UseRecombination";
236
237      useRecombinationBranch.Name = "Use Recombination?";
238      useRecombinationBranch.ConditionParameter.ActualName = "UseRecombination";
239
240      childrenCreator.ParentsPerChild = null;
241      childrenCreator.ParentsPerChildParameter.ActualName = ParentsPerChildParameter.Name;
242
243      recombinator.Name = "Recombinator (placeholder)";
244      recombinator.OperatorParameter.ActualName = RecombinatorParameter.Name;
245
246      strategyRecombinator.Name = "Strategy Parameter Recombinator (placeholder)";
247      strategyRecombinator.OperatorParameter.ActualName = StrategyParameterCrossoverParameter.Name;
248
249      strategyMutator1.Name = "Strategy Parameter Manipulator (placeholder)";
250      strategyMutator1.OperatorParameter.ActualName = StrategyParameterManipulatorParameter.Name;
251
252      mutator1.Name = "Mutator (placeholder)";
253      mutator1.OperatorParameter.ActualName = MutatorParameter.Name;
254
255      subScopesRemover.RemoveAllSubScopes = true;
256
257      strategyMutator2.Name = "Strategy Parameter Manipulator (placeholder)";
258      strategyMutator2.OperatorParameter.ActualName = StrategyParameterManipulatorParameter.Name;
259
260      mutator2.Name = "Mutator (placeholder)";
261      mutator2.OperatorParameter.ActualName = MutatorParameter.Name;
262
263      uniformSubScopesProcessor3.Parallel.Value = true;
264
265      evaluator.Name = "Evaluator (placeholder)";
266      evaluator.OperatorParameter.ActualName = EvaluatorParameter.Name;
267
268      subScopesCounter.Name = "Increment EvaluatedSolutions";
269      subScopesCounter.ValueParameter.ActualName = EvaluatedSolutionsParameter.Name;
270
271      plusOrCommaReplacementBranch.ConditionParameter.ActualName = PlusSelectionParameter.Name;
272
273      bestSelector.CopySelected = new BoolValue(false);
274      bestSelector.MaximizationParameter.ActualName = MaximizationParameter.Name;
275      bestSelector.NumberOfSelectedSubScopesParameter.ActualName = PopulationSizeParameter.Name;
276      bestSelector.QualityParameter.ActualName = QualityParameter.Name;
277
278      intCounter.Increment = new IntValue(1);
279      intCounter.ValueParameter.ActualName = "Generations";
280
281      maxGenerationsComparator.Comparison = new Comparison(ComparisonType.GreaterOrEqual);
282      maxGenerationsComparator.LeftSideParameter.ActualName = "Generations";
283      maxGenerationsComparator.ResultParameter.ActualName = "Terminate";
284      maxGenerationsComparator.RightSideParameter.ActualName = MaximumGenerationsParameter.Name;
285
286      analyzer2.Name = "Analyzer (placeholder)";
287      analyzer2.OperatorParameter.ActualName = AnalyzerParameter.Name;
288
289      conditionalBranchTerminate.ConditionParameter.ActualName = "Terminate";
290
291      reevaluateElitesBranch.ConditionParameter.ActualName = "ReevaluateElites";
292      reevaluateElitesBranch.Name = "Reevaluate elites ?";
293
294      uniformSubScopesProcessor4.Parallel.Value = true;
295
296      evaluator2.Name = "Evaluator (placeholder)";
297      evaluator2.OperatorParameter.ActualName = EvaluatorParameter.Name;
298
299      subScopesCounter2.Name = "Increment EvaluatedSolutions";
300      subScopesCounter2.ValueParameter.ActualName = EvaluatedSolutionsParameter.Name;
301
302      parentsComparator.ComparisonFactorParameter.ActualName = ComparisonFactorParameter.Name;
303      parentsComparator.LeftSideParameter.ActualName = QualityParameter.Name;
304      parentsComparator.RightSideParameter.ActualName = QualityParameter.Name;
305      parentsComparator.MaximizationParameter.ActualName = MaximizationParameter.Name;
306      parentsComparator.ResultParameter.ActualName = "SuccessfulOffspring";
307
308      subScopesRemover_afterCompare.RemoveAllSubScopes = true;
309
310      offspringSelector.CurrentSuccessRatioParameter.ActualName = CurrentSuccessRatioParameter.Name;
311      offspringSelector.MaximumSelectionPressureParameter.ActualName = MaximumSelectionPressureParameter.Name;
312      offspringSelector.SelectionPressureParameter.ActualName = SelectionPressureParameter.Name;
313      offspringSelector.SuccessRatioParameter.ActualName = SuccessRatioParameter.Name;
314      offspringSelector.OffspringPopulationParameter.ActualName = "OffspringPopulation";
315      offspringSelector.OffspringPopulationWinnersParameter.ActualName = "OffspringPopulationWinners";
316      offspringSelector.SuccessfulOffspringParameter.ActualName = "SuccessfulOffspring";
317      offspringSelector.QualityParameter.ActualName = QualityParameter.Name;
318
319      maxSelectionPressureComparator.Comparison = new Comparison(ComparisonType.GreaterOrEqual);
320      maxSelectionPressureComparator.LeftSideParameter.ActualName = "SelectionPressure";
321      maxSelectionPressureComparator.ResultParameter.ActualName = "TerminateSelectionPressure";
322      maxSelectionPressureComparator.RightSideParameter.ActualName = MaximumSelectionPressureParameter.Name;
323
324      conditionalBranchTerminateSelPressure.ConditionParameter.ActualName = "TerminateSelectionPressure";
325
326      maxEvaluatedSolutionsComparator.Comparison = new Comparison(ComparisonType.GreaterOrEqual);
327      maxEvaluatedSolutionsComparator.LeftSideParameter.ActualName = "EvaluatedSolutions";
328      maxEvaluatedSolutionsComparator.ResultParameter.ActualName = "TerminateEvaluatedSolutions";
329      maxEvaluatedSolutionsComparator.RightSideParameter.ActualName = MaximumEvaluatedSolutionsParameter.Name;
330
331      conditionalBranchTerminateEvalSolutions.ConditionParameter.ActualName = "TerminateEvaluatedSolutions";
332
333      #endregion
334
335      #region Create operator graph
336      OperatorGraph.InitialOperator = variableCreator;
337      variableCreator.Successor = resultsCollector1;
338      resultsCollector1.Successor = analyzer1;
339      analyzer1.Successor = selector;
340      selector.Successor = subScopesProcessor1;
341      subScopesProcessor1.Operators.Add(new EmptyOperator());
342      subScopesProcessor1.Operators.Add(useRecombinationComparator);
343
344      subScopesProcessor1.Successor = offspringSelector;
345      offspringSelector.OffspringCreator = selector;
346      offspringSelector.Successor = plusOrCommaReplacementBranch;
347
348      useRecombinationComparator.Successor = useRecombinationBranch;
349      useRecombinationBranch.TrueBranch = childrenCreator;
350
351      useRecombinationBranch.FalseBranch = childrenCopyCreator;
352      childrenCopyCreator.Successor = uniformSubScopesProcessor2;
353
354      useRecombinationBranch.Successor = uniformSubScopesProcessor3;
355      childrenCreator.Successor = uniformSubScopesProcessor1;
356      uniformSubScopesProcessor1.Operator = recombinator;
357      uniformSubScopesProcessor1.Successor = null;
358      recombinator.Successor = strategyRecombinator;
359      strategyRecombinator.Successor = strategyMutator1;
360      strategyMutator1.Successor = mutator1;
361
362      mutator1.Successor = null;
363
364      uniformSubScopesProcessor2.Operator = strategyMutator2;
365      uniformSubScopesProcessor2.Successor = null;
366      strategyMutator2.Successor = mutator2;
367      mutator2.Successor = null;
368      uniformSubScopesProcessor3.Operator = evaluator;
369      uniformSubScopesProcessor3.Successor = subScopesCounter;
370
371      evaluator.Successor = parentsComparator;
372      parentsComparator.Successor = subScopesRemover_afterCompare;
373      subScopesRemover_afterCompare.Successor = null;
374      subScopesCounter.Successor = null;
375
376      plusOrCommaReplacementBranch.TrueBranch = reevaluateElitesBranch;
377      reevaluateElitesBranch.TrueBranch = subScopesProcessor2;
378      reevaluateElitesBranch.FalseBranch = null;
379      subScopesProcessor2.Operators.Add(uniformSubScopesProcessor4);
380      subScopesProcessor2.Operators.Add(new EmptyOperator());
381      uniformSubScopesProcessor4.Operator = evaluator2;
382      uniformSubScopesProcessor4.Successor = subScopesCounter2;
383      subScopesCounter2.Successor = null;
384      reevaluateElitesBranch.Successor = plusReplacement;
385
386      plusReplacement.Successor = bestSelector;
387      bestSelector.Successor = rightReducer;
388
389      plusOrCommaReplacementBranch.FalseBranch = commaReplacement;
390      plusOrCommaReplacementBranch.Successor = intCounter;
391
392
393      intCounter.Successor = maxGenerationsComparator;
394      maxGenerationsComparator.Successor = maxSelectionPressureComparator;
395      maxSelectionPressureComparator.Successor = maxEvaluatedSolutionsComparator;
396      maxEvaluatedSolutionsComparator.Successor = analyzer2;
397      analyzer2.Successor = conditionalBranchTerminate;
398      conditionalBranchTerminate.FalseBranch = conditionalBranchTerminateSelPressure;
399      conditionalBranchTerminate.TrueBranch = null;
400      conditionalBranchTerminate.Successor = null;
401      conditionalBranchTerminateSelPressure.FalseBranch = conditionalBranchTerminateEvalSolutions;
402      conditionalBranchTerminateSelPressure.TrueBranch = null;
403      conditionalBranchTerminateSelPressure.Successor = null;
404      conditionalBranchTerminateEvalSolutions.FalseBranch = selector;
405      conditionalBranchTerminateEvalSolutions.TrueBranch = null;
406      conditionalBranchTerminateEvalSolutions.Successor = null;
407
408      #endregion
409    }
410
411    public override IOperation Apply() {
412      if (MutatorParameter.ActualValue == null)
413        return null;
414      return base.Apply();
415    }
416  }
417}
Note: See TracBrowser for help on using the repository browser.