[6577] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
[16057] | 3 | * Copyright (C) 2002-2018 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
[6577] | 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
[14523] | 23 | using System.Threading;
|
---|
[6577] | 24 | using HeuristicLab.Common;
|
---|
| 25 | using HeuristicLab.Core;
|
---|
| 26 | using HeuristicLab.Data;
|
---|
| 27 | using HeuristicLab.Optimization;
|
---|
[8465] | 28 | using HeuristicLab.Parameters;
|
---|
[6577] | 29 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
| 30 | using HeuristicLab.Problems.DataAnalysis;
|
---|
| 31 |
|
---|
| 32 | namespace HeuristicLab.Algorithms.DataAnalysis {
|
---|
| 33 | /// <summary>
|
---|
[6583] | 34 | /// Nearest neighbour regression data analysis algorithm.
|
---|
[6577] | 35 | /// </summary>
|
---|
[13238] | 36 | [Item("Nearest Neighbour Regression (kNN)", "Nearest neighbour regression data analysis algorithm (wrapper for ALGLIB).")]
|
---|
[12504] | 37 | [Creatable(CreatableAttribute.Categories.DataAnalysisRegression, Priority = 150)]
|
---|
[6577] | 38 | [StorableClass]
|
---|
[6583] | 39 | public sealed class NearestNeighbourRegression : FixedDataAnalysisAlgorithm<IRegressionProblem> {
|
---|
| 40 | private const string KParameterName = "K";
|
---|
| 41 | private const string NearestNeighbourRegressionModelResultName = "Nearest neighbour regression solution";
|
---|
[14235] | 42 | private const string WeightsParameterName = "Weights";
|
---|
[6578] | 43 |
|
---|
| 44 | #region parameter properties
|
---|
[6583] | 45 | public IFixedValueParameter<IntValue> KParameter {
|
---|
| 46 | get { return (IFixedValueParameter<IntValue>)Parameters[KParameterName]; }
|
---|
[6578] | 47 | }
|
---|
[14235] | 48 |
|
---|
| 49 | public IValueParameter<DoubleArray> WeightsParameter {
|
---|
| 50 | get { return (IValueParameter<DoubleArray>)Parameters[WeightsParameterName]; }
|
---|
| 51 | }
|
---|
[6578] | 52 | #endregion
|
---|
| 53 | #region properties
|
---|
[6583] | 54 | public int K {
|
---|
| 55 | get { return KParameter.Value.Value; }
|
---|
[6578] | 56 | set {
|
---|
[6583] | 57 | if (value <= 0) throw new ArgumentException("K must be larger than zero.", "K");
|
---|
| 58 | else KParameter.Value.Value = value;
|
---|
[6578] | 59 | }
|
---|
| 60 | }
|
---|
[14235] | 61 |
|
---|
| 62 | public DoubleArray Weights {
|
---|
| 63 | get { return WeightsParameter.Value; }
|
---|
| 64 | set { WeightsParameter.Value = value; }
|
---|
| 65 | }
|
---|
[6578] | 66 | #endregion
|
---|
| 67 |
|
---|
[6577] | 68 | [StorableConstructor]
|
---|
[6583] | 69 | private NearestNeighbourRegression(bool deserializing) : base(deserializing) { }
|
---|
| 70 | private NearestNeighbourRegression(NearestNeighbourRegression original, Cloner cloner)
|
---|
[6577] | 71 | : base(original, cloner) {
|
---|
| 72 | }
|
---|
[6583] | 73 | public NearestNeighbourRegression()
|
---|
[6577] | 74 | : base() {
|
---|
[6583] | 75 | Parameters.Add(new FixedValueParameter<IntValue>(KParameterName, "The number of nearest neighbours to consider for regression.", new IntValue(3)));
|
---|
[14235] | 76 | Parameters.Add(new OptionalValueParameter<DoubleArray>(WeightsParameterName, "Optional: use weights to specify individual scaling values for all features. If not set the weights are calculated automatically (each feature is scaled to unit variance)"));
|
---|
[6577] | 77 | Problem = new RegressionProblem();
|
---|
| 78 | }
|
---|
[14235] | 79 |
|
---|
[6577] | 80 | [StorableHook(HookType.AfterDeserialization)]
|
---|
[14235] | 81 | private void AfterDeserialization() {
|
---|
| 82 | // BackwardsCompatibility3.3
|
---|
| 83 | #region Backwards compatible code, remove with 3.4
|
---|
| 84 | if (!Parameters.ContainsKey(WeightsParameterName)) {
|
---|
| 85 | Parameters.Add(new OptionalValueParameter<DoubleArray>(WeightsParameterName, "Optional: use weights to specify individual scaling values for all features. If not set the weights are calculated automatically (each feature is scaled to unit variance)"));
|
---|
| 86 | }
|
---|
| 87 | #endregion
|
---|
| 88 | }
|
---|
[6577] | 89 |
|
---|
| 90 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
[6583] | 91 | return new NearestNeighbourRegression(this, cloner);
|
---|
[6577] | 92 | }
|
---|
| 93 |
|
---|
[6583] | 94 | #region nearest neighbour
|
---|
[14523] | 95 | protected override void Run(CancellationToken cancellationToken) {
|
---|
[14235] | 96 | double[] weights = null;
|
---|
| 97 | if (Weights != null) weights = Weights.CloneAsArray();
|
---|
| 98 | var solution = CreateNearestNeighbourRegressionSolution(Problem.ProblemData, K, weights);
|
---|
[6583] | 99 | Results.Add(new Result(NearestNeighbourRegressionModelResultName, "The nearest neighbour regression solution.", solution));
|
---|
[6577] | 100 | }
|
---|
| 101 |
|
---|
[14235] | 102 | public static IRegressionSolution CreateNearestNeighbourRegressionSolution(IRegressionProblemData problemData, int k, double[] weights = null) {
|
---|
[8465] | 103 | var clonedProblemData = (IRegressionProblemData)problemData.Clone();
|
---|
[14235] | 104 | return new NearestNeighbourRegressionSolution(Train(problemData, k, weights), clonedProblemData);
|
---|
[8465] | 105 | }
|
---|
[6577] | 106 |
|
---|
[14235] | 107 | public static INearestNeighbourModel Train(IRegressionProblemData problemData, int k, double[] weights = null) {
|
---|
[8465] | 108 | return new NearestNeighbourModel(problemData.Dataset,
|
---|
| 109 | problemData.TrainingIndices,
|
---|
| 110 | k,
|
---|
| 111 | problemData.TargetVariable,
|
---|
[14235] | 112 | problemData.AllowedInputVariables,
|
---|
| 113 | weights);
|
---|
[6577] | 114 | }
|
---|
| 115 | #endregion
|
---|
| 116 | }
|
---|
| 117 | }
|
---|