[8401] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
[16057] | 3 | * Copyright (C) 2002-2018 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
[8401] | 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
[8484] | 23 | using System.Collections.Generic;
|
---|
[8323] | 24 | using HeuristicLab.Common;
|
---|
| 25 | using HeuristicLab.Core;
|
---|
[8612] | 26 | using HeuristicLab.Data;
|
---|
[8982] | 27 | using HeuristicLab.Parameters;
|
---|
[8323] | 28 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
| 29 |
|
---|
[8371] | 30 | namespace HeuristicLab.Algorithms.DataAnalysis {
|
---|
[8323] | 31 | [StorableClass]
|
---|
[8615] | 32 | [Item(Name = "CovarianceSquaredExponentialIso",
|
---|
[8323] | 33 | Description = "Isotropic squared exponential covariance function for Gaussian processes.")]
|
---|
[8615] | 34 | public sealed class CovarianceSquaredExponentialIso : ParameterizedNamedItem, ICovarianceFunction {
|
---|
[8982] | 35 | public IValueParameter<DoubleValue> ScaleParameter {
|
---|
| 36 | get { return (IValueParameter<DoubleValue>)Parameters["Scale"]; }
|
---|
| 37 | }
|
---|
[8612] | 38 |
|
---|
[8982] | 39 | public IValueParameter<DoubleValue> InverseLengthParameter {
|
---|
| 40 | get { return (IValueParameter<DoubleValue>)Parameters["InverseLength"]; }
|
---|
| 41 | }
|
---|
[8323] | 42 |
|
---|
[10489] | 43 | private bool HasFixedInverseLengthParameter {
|
---|
| 44 | get { return InverseLengthParameter.Value != null; }
|
---|
| 45 | }
|
---|
| 46 | private bool HasFixedScaleParameter {
|
---|
| 47 | get { return ScaleParameter.Value != null; }
|
---|
| 48 | }
|
---|
| 49 |
|
---|
[8323] | 50 | [StorableConstructor]
|
---|
[8615] | 51 | private CovarianceSquaredExponentialIso(bool deserializing)
|
---|
[8323] | 52 | : base(deserializing) {
|
---|
| 53 | }
|
---|
| 54 |
|
---|
[8615] | 55 | private CovarianceSquaredExponentialIso(CovarianceSquaredExponentialIso original, Cloner cloner)
|
---|
[8323] | 56 | : base(original, cloner) {
|
---|
| 57 | }
|
---|
| 58 |
|
---|
[8615] | 59 | public CovarianceSquaredExponentialIso()
|
---|
[8323] | 60 | : base() {
|
---|
[8612] | 61 | Name = ItemName;
|
---|
| 62 | Description = ItemDescription;
|
---|
| 63 |
|
---|
[8982] | 64 | Parameters.Add(new OptionalValueParameter<DoubleValue>("Scale", "The scale parameter of the isometric squared exponential covariance function."));
|
---|
| 65 | Parameters.Add(new OptionalValueParameter<DoubleValue>("InverseLength", "The inverse length parameter of the isometric squared exponential covariance function."));
|
---|
[8323] | 66 | }
|
---|
| 67 |
|
---|
| 68 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
[8615] | 69 | return new CovarianceSquaredExponentialIso(this, cloner);
|
---|
[8323] | 70 | }
|
---|
| 71 |
|
---|
[8982] | 72 | public int GetNumberOfParameters(int numberOfVariables) {
|
---|
| 73 | return
|
---|
[10489] | 74 | (HasFixedScaleParameter ? 0 : 1) +
|
---|
| 75 | (HasFixedInverseLengthParameter ? 0 : 1);
|
---|
[8612] | 76 | }
|
---|
| 77 |
|
---|
[8982] | 78 | public void SetParameter(double[] p) {
|
---|
| 79 | double scale, inverseLength;
|
---|
| 80 | GetParameterValues(p, out scale, out inverseLength);
|
---|
| 81 | ScaleParameter.Value = new DoubleValue(scale);
|
---|
| 82 | InverseLengthParameter.Value = new DoubleValue(inverseLength);
|
---|
[8612] | 83 | }
|
---|
| 84 |
|
---|
[8323] | 85 |
|
---|
[8982] | 86 | private void GetParameterValues(double[] p, out double scale, out double inverseLength) {
|
---|
| 87 | // gather parameter values
|
---|
| 88 | int c = 0;
|
---|
[10489] | 89 | if (HasFixedInverseLengthParameter) {
|
---|
[8982] | 90 | inverseLength = InverseLengthParameter.Value.Value;
|
---|
| 91 | } else {
|
---|
| 92 | inverseLength = 1.0 / Math.Exp(p[c]);
|
---|
| 93 | c++;
|
---|
[8612] | 94 | }
|
---|
[8982] | 95 |
|
---|
[10489] | 96 | if (HasFixedScaleParameter) {
|
---|
[8982] | 97 | scale = ScaleParameter.Value.Value;
|
---|
| 98 | } else {
|
---|
| 99 | scale = Math.Exp(2 * p[c]);
|
---|
| 100 | c++;
|
---|
[8612] | 101 | }
|
---|
[8982] | 102 | if (p.Length != c) throw new ArgumentException("The length of the parameter vector does not match the number of free parameters for CovarianceSquaredExponentialIso", "p");
|
---|
[8416] | 103 | }
|
---|
[8323] | 104 |
|
---|
[13721] | 105 | public ParameterizedCovarianceFunction GetParameterizedCovarianceFunction(double[] p, int[] columnIndices) {
|
---|
[8982] | 106 | double inverseLength, scale;
|
---|
| 107 | GetParameterValues(p, out scale, out inverseLength);
|
---|
[10489] | 108 | var fixedInverseLength = HasFixedInverseLengthParameter;
|
---|
| 109 | var fixedScale = HasFixedScaleParameter;
|
---|
[8982] | 110 | // create functions
|
---|
| 111 | var cov = new ParameterizedCovarianceFunction();
|
---|
| 112 | cov.Covariance = (x, i, j) => {
|
---|
| 113 | double d = i == j
|
---|
| 114 | ? 0.0
|
---|
[13721] | 115 | : Util.SqrDist(x, i, j, columnIndices, inverseLength);
|
---|
[8982] | 116 | return scale * Math.Exp(-d / 2.0);
|
---|
| 117 | };
|
---|
| 118 | cov.CrossCovariance = (x, xt, i, j) => {
|
---|
[13721] | 119 | double d = Util.SqrDist(x, i, xt, j, columnIndices, inverseLength);
|
---|
[8982] | 120 | return scale * Math.Exp(-d / 2.0);
|
---|
| 121 | };
|
---|
[10489] | 122 | cov.CovarianceGradient = (x, i, j) => GetGradient(x, i, j, scale, inverseLength, columnIndices,
|
---|
| 123 | fixedInverseLength, fixedScale);
|
---|
[8982] | 124 | return cov;
|
---|
[8323] | 125 | }
|
---|
| 126 |
|
---|
[9108] | 127 | // order of returned gradients must match the order in GetParameterValues!
|
---|
[13784] | 128 | private static IList<double> GetGradient(double[,] x, int i, int j, double sf2, double inverseLength, int[] columnIndices,
|
---|
[10489] | 129 | bool fixedInverseLength, bool fixedScale) {
|
---|
[8484] | 130 | double d = i == j
|
---|
| 131 | ? 0.0
|
---|
[13721] | 132 | : Util.SqrDist(x, i, j, columnIndices, inverseLength);
|
---|
[8484] | 133 | double g = Math.Exp(-d / 2.0);
|
---|
[13784] | 134 | var gr = new List<double>(2);
|
---|
| 135 | if (!fixedInverseLength) gr.Add(sf2 * g * d);
|
---|
| 136 | if (!fixedScale) gr.Add(2.0 * sf2 * g);
|
---|
| 137 | return gr;
|
---|
[8323] | 138 | }
|
---|
| 139 | }
|
---|
| 140 | }
|
---|