1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2018 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Linq;
|
---|
25 | using HeuristicLab.Common;
|
---|
26 | using HeuristicLab.Core;
|
---|
27 | using HeuristicLab.Data;
|
---|
28 | using HeuristicLab.Parameters;
|
---|
29 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
30 |
|
---|
31 | namespace HeuristicLab.Algorithms.DataAnalysis {
|
---|
32 | [StorableClass]
|
---|
33 | [Item(Name = "CovarianceSpectralMixture",
|
---|
34 | Description = "The spectral mixture kernel described in Wilson A. G. and Adams R.P., Gaussian Process Kernels for Pattern Discovery and Exptrapolation, ICML 2013.")]
|
---|
35 | public sealed class CovarianceSpectralMixture : ParameterizedNamedItem, ICovarianceFunction {
|
---|
36 | public const string QParameterName = "Number of components (Q)";
|
---|
37 | public const string WeightParameterName = "Weight";
|
---|
38 | public const string FrequencyParameterName = "Component frequency (mu)";
|
---|
39 | public const string LengthScaleParameterName = "Length scale (nu)";
|
---|
40 | public IValueParameter<IntValue> QParameter {
|
---|
41 | get { return (IValueParameter<IntValue>)Parameters[QParameterName]; }
|
---|
42 | }
|
---|
43 |
|
---|
44 | public IValueParameter<DoubleArray> WeightParameter {
|
---|
45 | get { return (IValueParameter<DoubleArray>)Parameters[WeightParameterName]; }
|
---|
46 | }
|
---|
47 | public IValueParameter<DoubleArray> FrequencyParameter {
|
---|
48 | get { return (IValueParameter<DoubleArray>)Parameters[FrequencyParameterName]; }
|
---|
49 | }
|
---|
50 |
|
---|
51 | public IValueParameter<DoubleArray> LengthScaleParameter {
|
---|
52 | get { return (IValueParameter<DoubleArray>)Parameters[LengthScaleParameterName]; }
|
---|
53 | }
|
---|
54 |
|
---|
55 | private bool HasFixedWeightParameter {
|
---|
56 | get { return WeightParameter.Value != null; }
|
---|
57 | }
|
---|
58 | private bool HasFixedFrequencyParameter {
|
---|
59 | get { return FrequencyParameter.Value != null; }
|
---|
60 | }
|
---|
61 | private bool HasFixedLengthScaleParameter {
|
---|
62 | get { return LengthScaleParameter.Value != null; }
|
---|
63 | }
|
---|
64 |
|
---|
65 | [StorableConstructor]
|
---|
66 | private CovarianceSpectralMixture(bool deserializing)
|
---|
67 | : base(deserializing) {
|
---|
68 | }
|
---|
69 |
|
---|
70 | private CovarianceSpectralMixture(CovarianceSpectralMixture original, Cloner cloner)
|
---|
71 | : base(original, cloner) {
|
---|
72 | }
|
---|
73 |
|
---|
74 | public CovarianceSpectralMixture()
|
---|
75 | : base() {
|
---|
76 | Name = ItemName;
|
---|
77 | Description = ItemDescription;
|
---|
78 | Parameters.Add(new ValueParameter<IntValue>(QParameterName, "The number of Gaussians (Q) to use for the spectral mixture.", new IntValue(10)));
|
---|
79 | Parameters.Add(new OptionalValueParameter<DoubleArray>(WeightParameterName, "The weight of the component w (peak height of the Gaussian in spectrum)."));
|
---|
80 | Parameters.Add(new OptionalValueParameter<DoubleArray>(FrequencyParameterName, "The inverse component period parameter mu_q (location of the Gaussian in spectrum)."));
|
---|
81 | Parameters.Add(new OptionalValueParameter<DoubleArray>(LengthScaleParameterName, "The length scale parameter (nu_q) (variance of the Gaussian in the spectrum)."));
|
---|
82 | }
|
---|
83 |
|
---|
84 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
85 | return new CovarianceSpectralMixture(this, cloner);
|
---|
86 | }
|
---|
87 |
|
---|
88 | public int GetNumberOfParameters(int numberOfVariables) {
|
---|
89 | var q = QParameter.Value.Value;
|
---|
90 | return
|
---|
91 | (HasFixedWeightParameter ? 0 : q) +
|
---|
92 | (HasFixedFrequencyParameter ? 0 : q * numberOfVariables) +
|
---|
93 | (HasFixedLengthScaleParameter ? 0 : q * numberOfVariables);
|
---|
94 | }
|
---|
95 |
|
---|
96 | public void SetParameter(double[] p) {
|
---|
97 | double[] weight, frequency, lengthScale;
|
---|
98 | GetParameterValues(p, out weight, out frequency, out lengthScale);
|
---|
99 | WeightParameter.Value = new DoubleArray(weight);
|
---|
100 | FrequencyParameter.Value = new DoubleArray(frequency);
|
---|
101 | LengthScaleParameter.Value = new DoubleArray(lengthScale);
|
---|
102 | }
|
---|
103 |
|
---|
104 |
|
---|
105 | private void GetParameterValues(double[] p, out double[] weight, out double[] frequency, out double[] lengthScale) {
|
---|
106 | // gather parameter values
|
---|
107 | int c = 0;
|
---|
108 | int q = QParameter.Value.Value;
|
---|
109 | // guess number of elements for frequency and length (=q * numberOfVariables)
|
---|
110 | int n = WeightParameter.Value == null ? ((p.Length - q) / 2) : (p.Length / 2);
|
---|
111 | if (HasFixedWeightParameter) {
|
---|
112 | weight = WeightParameter.Value.ToArray();
|
---|
113 | } else {
|
---|
114 | weight = p.Skip(c).Select(Math.Exp).Take(q).ToArray();
|
---|
115 | c += q;
|
---|
116 | }
|
---|
117 | if (HasFixedFrequencyParameter) {
|
---|
118 | frequency = FrequencyParameter.Value.ToArray();
|
---|
119 | } else {
|
---|
120 | frequency = p.Skip(c).Select(Math.Exp).Take(n).ToArray();
|
---|
121 | c += n;
|
---|
122 | }
|
---|
123 | if (HasFixedLengthScaleParameter) {
|
---|
124 | lengthScale = LengthScaleParameter.Value.ToArray();
|
---|
125 | } else {
|
---|
126 | lengthScale = p.Skip(c).Select(Math.Exp).Take(n).ToArray();
|
---|
127 | c += n;
|
---|
128 | }
|
---|
129 | if (p.Length != c) throw new ArgumentException("The length of the parameter vector does not match the number of free parameters for CovarianceSpectralMixture", "p");
|
---|
130 | }
|
---|
131 |
|
---|
132 | public ParameterizedCovarianceFunction GetParameterizedCovarianceFunction(double[] p, int[] columnIndices) {
|
---|
133 | double[] weight, frequency, lengthScale;
|
---|
134 | GetParameterValues(p, out weight, out frequency, out lengthScale);
|
---|
135 | var fixedWeight = HasFixedWeightParameter;
|
---|
136 | var fixedFrequency = HasFixedFrequencyParameter;
|
---|
137 | var fixedLengthScale = HasFixedLengthScaleParameter;
|
---|
138 | // create functions
|
---|
139 | var cov = new ParameterizedCovarianceFunction();
|
---|
140 | cov.Covariance = (x, i, j) => {
|
---|
141 | return GetCovariance(x, x, i, j, QParameter.Value.Value, weight, frequency,
|
---|
142 | lengthScale, columnIndices);
|
---|
143 | };
|
---|
144 | cov.CrossCovariance = (x, xt, i, j) => {
|
---|
145 | return GetCovariance(x, xt, i, j, QParameter.Value.Value, weight, frequency,
|
---|
146 | lengthScale, columnIndices);
|
---|
147 | };
|
---|
148 | cov.CovarianceGradient = (x, i, j) => GetGradient(x, i, j, QParameter.Value.Value, weight, frequency,
|
---|
149 | lengthScale, columnIndices, fixedWeight, fixedFrequency, fixedLengthScale);
|
---|
150 | return cov;
|
---|
151 | }
|
---|
152 |
|
---|
153 | private static double GetCovariance(double[,] x, double[,] xt, int i, int j, int maxQ, double[] weight, double[] frequency, double[] lengthScale, int[] columnIndices) {
|
---|
154 | // tau = x - x' (only for selected variables)
|
---|
155 | double[] tau =
|
---|
156 | Util.GetRow(x, i, columnIndices).Zip(Util.GetRow(xt, j, columnIndices), (xi, xj) => xi - xj).ToArray();
|
---|
157 | int numberOfVariables = lengthScale.Length / maxQ;
|
---|
158 | double k = 0;
|
---|
159 | // for each component
|
---|
160 | for (int q = 0; q < maxQ; q++) {
|
---|
161 | double kc = weight[q]; // weighted kernel component
|
---|
162 |
|
---|
163 | int idx = 0; // helper index for tau
|
---|
164 | // for each selected variable
|
---|
165 | for (int c = 0; c < columnIndices.Length; c++) {
|
---|
166 | var col = columnIndices[c];
|
---|
167 | kc *= f1(tau[idx], lengthScale[q * numberOfVariables + col]) * f2(tau[idx], frequency[q * numberOfVariables + col]);
|
---|
168 | idx++;
|
---|
169 | }
|
---|
170 | k += kc;
|
---|
171 | }
|
---|
172 | return k;
|
---|
173 | }
|
---|
174 |
|
---|
175 | public static double f1(double tau, double lengthScale) {
|
---|
176 | return Math.Exp(-2 * Math.PI * Math.PI * tau * tau * lengthScale);
|
---|
177 | }
|
---|
178 | public static double f2(double tau, double frequency) {
|
---|
179 | return Math.Cos(2 * Math.PI * tau * frequency);
|
---|
180 | }
|
---|
181 |
|
---|
182 | // order of returned gradients must match the order in GetParameterValues!
|
---|
183 | private static IList<double> GetGradient(double[,] x, int i, int j, int maxQ, double[] weight, double[] frequency, double[] lengthScale, int[] columnIndices,
|
---|
184 | bool fixedWeight, bool fixedFrequency, bool fixedLengthScale) {
|
---|
185 | double[] tau = Util.GetRow(x, i, columnIndices).Zip(Util.GetRow(x, j, columnIndices), (xi, xj) => xi - xj).ToArray();
|
---|
186 | int numberOfVariables = lengthScale.Length / maxQ;
|
---|
187 |
|
---|
188 | var g = new List<double>((!fixedWeight ? maxQ : 0) + (!fixedFrequency ? maxQ * columnIndices.Length : 0) + (!fixedLengthScale ? maxQ * columnIndices.Length : 0));
|
---|
189 | if (!fixedWeight) {
|
---|
190 | // weight
|
---|
191 | // for each component
|
---|
192 | for (int q = 0; q < maxQ; q++) {
|
---|
193 | double k = weight[q];
|
---|
194 | int idx = 0; // helper index for tau
|
---|
195 | // for each selected variable
|
---|
196 | for (int c = 0; c < columnIndices.Length; c++) {
|
---|
197 | var col = columnIndices[c];
|
---|
198 | k *= f1(tau[idx], lengthScale[q * numberOfVariables + col]) * f2(tau[idx], frequency[q * numberOfVariables + col]);
|
---|
199 | idx++;
|
---|
200 | }
|
---|
201 | g.Add(k);
|
---|
202 | }
|
---|
203 | }
|
---|
204 |
|
---|
205 | if (!fixedFrequency) {
|
---|
206 | // frequency
|
---|
207 | // for each component
|
---|
208 | for (int q = 0; q < maxQ; q++) {
|
---|
209 | int idx = 0; // helper index for tau
|
---|
210 | // for each selected variable
|
---|
211 | foreach (var c in columnIndices) {
|
---|
212 | double k = f1(tau[idx], lengthScale[q * numberOfVariables + c]) *
|
---|
213 | -2 * Math.PI * tau[idx] * frequency[q * numberOfVariables + c] *
|
---|
214 | Math.Sin(2 * Math.PI * tau[idx] * frequency[q * numberOfVariables + c]);
|
---|
215 | idx++;
|
---|
216 | g.Add(weight[q] * k);
|
---|
217 | }
|
---|
218 | }
|
---|
219 | }
|
---|
220 |
|
---|
221 | if (!fixedLengthScale) {
|
---|
222 | // length scale
|
---|
223 | // for each component
|
---|
224 | for (int q = 0; q < maxQ; q++) {
|
---|
225 | int idx = 0; // helper index for tau
|
---|
226 | // for each selected variable
|
---|
227 | foreach (var c in columnIndices) {
|
---|
228 | double k = -2 * Math.PI * Math.PI * tau[idx] * tau[idx] * lengthScale[q * numberOfVariables + c] *
|
---|
229 | f1(tau[idx], lengthScale[q * numberOfVariables + c]) *
|
---|
230 | f2(tau[idx], frequency[q * numberOfVariables + c]);
|
---|
231 | idx++;
|
---|
232 | g.Add(weight[q] * k);
|
---|
233 | }
|
---|
234 | }
|
---|
235 | }
|
---|
236 |
|
---|
237 | return g;
|
---|
238 | }
|
---|
239 | }
|
---|
240 | }
|
---|