[9359] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
[16057] | 3 | * Copyright (C) 2002-2018 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
[9359] | 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
| 23 | using System.Collections.Generic;
|
---|
| 24 | using HeuristicLab.Common;
|
---|
| 25 | using HeuristicLab.Core;
|
---|
| 26 | using HeuristicLab.Data;
|
---|
| 27 | using HeuristicLab.Parameters;
|
---|
| 28 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
| 29 |
|
---|
| 30 | namespace HeuristicLab.Algorithms.DataAnalysis {
|
---|
| 31 | [StorableClass]
|
---|
| 32 | [Item(Name = "CovarianceNeuralNetwork",
|
---|
| 33 | Description = "Neural network covariance function for Gaussian processes.")]
|
---|
| 34 | public sealed class CovarianceNeuralNetwork : ParameterizedNamedItem, ICovarianceFunction {
|
---|
| 35 | public IValueParameter<DoubleValue> ScaleParameter {
|
---|
| 36 | get { return (IValueParameter<DoubleValue>)Parameters["Scale"]; }
|
---|
| 37 | }
|
---|
| 38 |
|
---|
[9360] | 39 | public IValueParameter<DoubleValue> LengthParameter {
|
---|
| 40 | get { return (IValueParameter<DoubleValue>)Parameters["Length"]; }
|
---|
[9359] | 41 | }
|
---|
[10489] | 42 | private bool HasFixedScaleParameter {
|
---|
| 43 | get { return ScaleParameter.Value != null; }
|
---|
| 44 | }
|
---|
| 45 | private bool HasFixedLengthParameter {
|
---|
| 46 | get { return LengthParameter.Value != null; }
|
---|
| 47 | }
|
---|
[9359] | 48 |
|
---|
| 49 | [StorableConstructor]
|
---|
| 50 | private CovarianceNeuralNetwork(bool deserializing)
|
---|
| 51 | : base(deserializing) {
|
---|
| 52 | }
|
---|
| 53 |
|
---|
| 54 | private CovarianceNeuralNetwork(CovarianceNeuralNetwork original, Cloner cloner)
|
---|
| 55 | : base(original, cloner) {
|
---|
| 56 | }
|
---|
| 57 |
|
---|
| 58 | public CovarianceNeuralNetwork()
|
---|
| 59 | : base() {
|
---|
| 60 | Name = ItemName;
|
---|
| 61 | Description = ItemDescription;
|
---|
| 62 |
|
---|
| 63 | Parameters.Add(new OptionalValueParameter<DoubleValue>("Scale", "The scale parameter."));
|
---|
[9360] | 64 | Parameters.Add(new OptionalValueParameter<DoubleValue>("Length", "The length parameter."));
|
---|
[9359] | 65 | }
|
---|
| 66 |
|
---|
| 67 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
| 68 | return new CovarianceNeuralNetwork(this, cloner);
|
---|
| 69 | }
|
---|
| 70 |
|
---|
| 71 | public int GetNumberOfParameters(int numberOfVariables) {
|
---|
| 72 | return
|
---|
[10489] | 73 | (HasFixedScaleParameter ? 0 : 1) +
|
---|
| 74 | (HasFixedLengthParameter ? 0 : 1);
|
---|
[9359] | 75 | }
|
---|
| 76 |
|
---|
| 77 | public void SetParameter(double[] p) {
|
---|
[9360] | 78 | double scale, length;
|
---|
| 79 | GetParameterValues(p, out scale, out length);
|
---|
[9359] | 80 | ScaleParameter.Value = new DoubleValue(scale);
|
---|
[9360] | 81 | LengthParameter.Value = new DoubleValue(length);
|
---|
[9359] | 82 | }
|
---|
| 83 |
|
---|
| 84 |
|
---|
[9360] | 85 | private void GetParameterValues(double[] p, out double scale, out double length) {
|
---|
[9359] | 86 | // gather parameter values
|
---|
| 87 | int c = 0;
|
---|
[10489] | 88 | if (HasFixedLengthParameter) {
|
---|
[9360] | 89 | length = LengthParameter.Value.Value;
|
---|
[9359] | 90 | } else {
|
---|
[9360] | 91 | length = Math.Exp(2 * p[c]);
|
---|
[9359] | 92 | c++;
|
---|
| 93 | }
|
---|
| 94 |
|
---|
[10489] | 95 | if (HasFixedScaleParameter) {
|
---|
[9359] | 96 | scale = ScaleParameter.Value.Value;
|
---|
| 97 | } else {
|
---|
| 98 | scale = Math.Exp(2 * p[c]);
|
---|
| 99 | c++;
|
---|
| 100 | }
|
---|
| 101 | if (p.Length != c) throw new ArgumentException("The length of the parameter vector does not match the number of free parameters for CovarianceNeuralNetwork", "p");
|
---|
| 102 | }
|
---|
| 103 |
|
---|
[13721] | 104 | public ParameterizedCovarianceFunction GetParameterizedCovarianceFunction(double[] p, int[] columnIndices) {
|
---|
[9360] | 105 | double length, scale;
|
---|
| 106 | GetParameterValues(p, out scale, out length);
|
---|
[10489] | 107 | var fixedLength = HasFixedLengthParameter;
|
---|
| 108 | var fixedScale = HasFixedScaleParameter;
|
---|
[9359] | 109 |
|
---|
| 110 | var cov = new ParameterizedCovarianceFunction();
|
---|
| 111 | cov.Covariance = (x, i, j) => {
|
---|
[10489] | 112 | double sx = 1.0;
|
---|
| 113 | double s1 = 1.0;
|
---|
| 114 | double s2 = 1.0;
|
---|
[13721] | 115 | for (int c = 0; c < columnIndices.Length; c++) {
|
---|
| 116 | var col = columnIndices[c];
|
---|
[10489] | 117 | sx += x[i, col] * x[j, col];
|
---|
| 118 | s1 += x[i, col] * x[i, col];
|
---|
| 119 | s2 += x[j, col] * x[j, col];
|
---|
[9359] | 120 | }
|
---|
[10489] | 121 |
|
---|
| 122 | return (scale * Math.Asin(sx / (Math.Sqrt((length + s1) * (length + s2)))));
|
---|
[9359] | 123 | };
|
---|
| 124 | cov.CrossCovariance = (x, xt, i, j) => {
|
---|
[10489] | 125 | double sx = 1.0;
|
---|
| 126 | double s1 = 1.0;
|
---|
| 127 | double s2 = 1.0;
|
---|
[13721] | 128 | for (int c = 0; c < columnIndices.Length; c++) {
|
---|
| 129 | var col = columnIndices[c];
|
---|
[10489] | 130 | sx += x[i, col] * xt[j, col];
|
---|
| 131 | s1 += x[i, col] * x[i, col];
|
---|
| 132 | s2 += xt[j, col] * xt[j, col];
|
---|
[9359] | 133 | }
|
---|
[10489] | 134 |
|
---|
| 135 | return (scale * Math.Asin(sx / (Math.Sqrt((length + s1) * (length + s2)))));
|
---|
[9359] | 136 | };
|
---|
[10489] | 137 | cov.CovarianceGradient = (x, i, j) => GetGradient(x, i, j, length, scale, columnIndices, fixedLength, fixedScale);
|
---|
| 138 | return cov;
|
---|
| 139 | }
|
---|
| 140 |
|
---|
| 141 | // order of returned gradients must match the order in GetParameterValues!
|
---|
[13784] | 142 | private static IList<double> GetGradient(double[,] x, int i, int j, double length, double scale, int[] columnIndices,
|
---|
[10489] | 143 | bool fixedLength, bool fixedScale) {
|
---|
[13784] | 144 | double sx = 1.0;
|
---|
| 145 | double s1 = 1.0;
|
---|
| 146 | double s2 = 1.0;
|
---|
| 147 | for (int c = 0; c < columnIndices.Length; c++) {
|
---|
| 148 | var col = columnIndices[c];
|
---|
| 149 | sx += x[i, col] * x[j, col];
|
---|
| 150 | s1 += x[i, col] * x[i, col];
|
---|
| 151 | s2 += x[j, col] * x[j, col];
|
---|
[10490] | 152 | }
|
---|
[13784] | 153 | var h = (length + s1) * (length + s2);
|
---|
| 154 | var f = sx / Math.Sqrt(h);
|
---|
| 155 |
|
---|
| 156 | var g = new List<double>(2);
|
---|
| 157 | if (!fixedLength) g.Add(-scale / Math.Sqrt(1.0 - f * f) * ((length * sx * (2.0 * length + s1 + s2)) / Math.Pow(h, 3.0 / 2.0)));
|
---|
| 158 | if (!fixedScale) g.Add(2.0 * scale * Math.Asin(f));
|
---|
| 159 | return g;
|
---|
[9359] | 160 | }
|
---|
| 161 | }
|
---|
| 162 | }
|
---|