1 | using System;
|
---|
2 | using HeuristicLab.Core;
|
---|
3 | using HeuristicLab.Data;
|
---|
4 | using HeuristicLab.Encodings.RealVectorEncoding;
|
---|
5 |
|
---|
6 | namespace HeuristicLab.Algorithms.NSGA3
|
---|
7 | {
|
---|
8 | /*
|
---|
9 | * Implements the simulated binary crossover based on the Tsung Che Chiang's NSGA3 implementation.
|
---|
10 | * http://web.ntnu.edu.tw/~tcchiang/publications/nsga3cpp/nsga3cpp.htm
|
---|
11 | *
|
---|
12 | * The simulated binary crossover in HeuristicLab.Encodings.RealVectorEncoding/Crossovers/SimulatedBinaryCrossover.cs
|
---|
13 | * is not usable, because it takes different parameters than stated in the NSGA-III paper. It takes contiguity as a
|
---|
14 | * parameter instead of an eta value.
|
---|
15 | */
|
---|
16 |
|
---|
17 | public static class SimulatedBinaryCrossover
|
---|
18 | {
|
---|
19 | private const double EPSILON = 10e-6; // a tiny number that is greater than 0
|
---|
20 |
|
---|
21 | public static Tuple<RealVector, RealVector> Apply(IRandom random, DoubleMatrix bounds, RealVector parent1, RealVector parent2, double crossoverProbability = 1.0, double eta = 20)
|
---|
22 | {
|
---|
23 | var child1 = new RealVector(parent1);
|
---|
24 | var child2 = new RealVector(parent2);
|
---|
25 |
|
---|
26 | if (random.NextDouble() > crossoverProbability) return null;
|
---|
27 |
|
---|
28 | for (int i = 0; i < child1.Length; i++)
|
---|
29 | {
|
---|
30 | if (random.NextDouble() > 0.5) continue; // these two variables are not crossovered
|
---|
31 | if (Math.Abs(parent1[i] - parent2[i]) < EPSILON) continue; // two values are the same
|
---|
32 |
|
---|
33 | double y1 = Math.Min(parent1[i], parent2[i]);
|
---|
34 | double y2 = Math.Max(parent1[i], parent2[i]);
|
---|
35 |
|
---|
36 | double lb;
|
---|
37 | double ub;
|
---|
38 | if (bounds.Rows == 1)
|
---|
39 | {
|
---|
40 | lb = bounds[0, 0];
|
---|
41 | ub = bounds[0, 1];
|
---|
42 | }
|
---|
43 | else
|
---|
44 | {
|
---|
45 | lb = bounds[i, 0];
|
---|
46 | ub = bounds[i, 1];
|
---|
47 | }
|
---|
48 |
|
---|
49 | double rand = random.NextDouble();
|
---|
50 |
|
---|
51 | // child 1
|
---|
52 | double beta = 1.0 + (2.0 * (y1 - lb) / (y2 - y1));
|
---|
53 | double alpha = 2.0 - Math.Pow(beta, -(eta + 1.0));
|
---|
54 | double betaq = Get_Betaq(rand, alpha, eta);
|
---|
55 |
|
---|
56 | child1[i] = 0.5 * ((y1 + y2) - betaq * (y2 - y1));
|
---|
57 |
|
---|
58 | // child 2
|
---|
59 | beta = 1.0 + (2.0 * (ub - y2) / (y2 - y1));
|
---|
60 | alpha = 2.0 - Math.Pow(beta, -(eta + 1.0));
|
---|
61 | betaq = Get_Betaq(rand, alpha, eta);
|
---|
62 |
|
---|
63 | child2[i] = 0.5 * ((y1 + y2) + betaq * (y2 - y1));
|
---|
64 |
|
---|
65 | // boundary checking
|
---|
66 | child1[i] = Math.Min(ub, Math.Max(lb, child1[i]));
|
---|
67 | child2[i] = Math.Min(ub, Math.Max(lb, child2[i]));
|
---|
68 |
|
---|
69 | if (random.NextDouble() <= 0.5)
|
---|
70 | {
|
---|
71 | // swap values
|
---|
72 | var tmp = child1[i];
|
---|
73 | child1[i] = child2[i];
|
---|
74 | child2[i] = tmp;
|
---|
75 | }
|
---|
76 | }
|
---|
77 |
|
---|
78 | return Tuple.Create(child1, child2);
|
---|
79 | }
|
---|
80 |
|
---|
81 | private static double Get_Betaq(double rand, double alpha, double eta)
|
---|
82 | {
|
---|
83 | double betaq;
|
---|
84 | if (rand <= (1.0 / alpha))
|
---|
85 | betaq = Math.Pow((rand * alpha), (1.0 / (eta + 1.0)));
|
---|
86 | else
|
---|
87 | betaq = Math.Pow((1.0 / (2.0 - rand * alpha)), (1.0 / (eta + 1.0)));
|
---|
88 | return betaq;
|
---|
89 | }
|
---|
90 | }
|
---|
91 | } |
---|