[17657] | 1 | using System;
|
---|
| 2 | using HeuristicLab.Core;
|
---|
| 3 | using HeuristicLab.Data;
|
---|
| 4 | using HeuristicLab.Encodings.RealVectorEncoding;
|
---|
| 5 |
|
---|
| 6 | namespace HeuristicLab.Algorithms.NSGA3
|
---|
| 7 | {
|
---|
| 8 | /*
|
---|
| 9 | * Implements the simulated binary crossover based on the Tsung Che Chiang's NSGA3 implementation.
|
---|
| 10 | * http://web.ntnu.edu.tw/~tcchiang/publications/nsga3cpp/nsga3cpp.htm
|
---|
| 11 | *
|
---|
| 12 | * The simulated binary crossover in HeuristicLab.Encodings.RealVectorEncoding/Crossovers/SimulatedBinaryCrossover.cs
|
---|
[17727] | 13 | * is not usable, because it takes different parameters than stated in the NSGA-III paper. It takes contiguity as a
|
---|
| 14 | * parameter instead of an eta value.
|
---|
[17657] | 15 | */
|
---|
| 16 |
|
---|
| 17 | public static class SimulatedBinaryCrossover
|
---|
| 18 | {
|
---|
| 19 | private const double EPSILON = 10e-6; // a tiny number that is greater than 0
|
---|
| 20 |
|
---|
[17727] | 21 | public static Tuple<RealVector, RealVector> Apply(IRandom random, DoubleMatrix bounds, RealVector parent1, RealVector parent2, double crossoverProbability = 1.0, double eta = 20)
|
---|
[17657] | 22 | {
|
---|
| 23 | var child1 = new RealVector(parent1);
|
---|
| 24 | var child2 = new RealVector(parent2);
|
---|
| 25 |
|
---|
| 26 | if (random.NextDouble() > crossoverProbability) return null;
|
---|
| 27 |
|
---|
| 28 | for (int i = 0; i < child1.Length; i++)
|
---|
| 29 | {
|
---|
| 30 | if (random.NextDouble() > 0.5) continue; // these two variables are not crossovered
|
---|
| 31 | if (Math.Abs(parent1[i] - parent2[i]) < EPSILON) continue; // two values are the same
|
---|
| 32 |
|
---|
| 33 | double y1 = Math.Min(parent1[i], parent2[i]);
|
---|
| 34 | double y2 = Math.Max(parent1[i], parent2[i]);
|
---|
| 35 |
|
---|
| 36 | double lb;
|
---|
| 37 | double ub;
|
---|
| 38 | if (bounds.Rows == 1)
|
---|
| 39 | {
|
---|
| 40 | lb = bounds[0, 0];
|
---|
| 41 | ub = bounds[0, 1];
|
---|
| 42 | }
|
---|
| 43 | else
|
---|
| 44 | {
|
---|
| 45 | lb = bounds[i, 0];
|
---|
| 46 | ub = bounds[i, 1];
|
---|
| 47 | }
|
---|
| 48 |
|
---|
| 49 | double rand = random.NextDouble();
|
---|
| 50 |
|
---|
| 51 | // child 1
|
---|
| 52 | double beta = 1.0 + (2.0 * (y1 - lb) / (y2 - y1));
|
---|
| 53 | double alpha = 2.0 - Math.Pow(beta, -(eta + 1.0));
|
---|
| 54 | double betaq = Get_Betaq(rand, alpha, eta);
|
---|
| 55 |
|
---|
| 56 | child1[i] = 0.5 * ((y1 + y2) - betaq * (y2 - y1));
|
---|
| 57 |
|
---|
| 58 | // child 2
|
---|
| 59 | beta = 1.0 + (2.0 * (ub - y2) / (y2 - y1));
|
---|
| 60 | alpha = 2.0 - Math.Pow(beta, -(eta + 1.0));
|
---|
| 61 | betaq = Get_Betaq(rand, alpha, eta);
|
---|
| 62 |
|
---|
| 63 | child2[i] = 0.5 * ((y1 + y2) + betaq * (y2 - y1));
|
---|
| 64 |
|
---|
| 65 | // boundary checking
|
---|
| 66 | child1[i] = Math.Min(ub, Math.Max(lb, child1[i]));
|
---|
| 67 | child2[i] = Math.Min(ub, Math.Max(lb, child2[i]));
|
---|
| 68 |
|
---|
| 69 | if (random.NextDouble() <= 0.5)
|
---|
| 70 | {
|
---|
| 71 | // swap values
|
---|
| 72 | var tmp = child1[i];
|
---|
| 73 | child1[i] = child2[i];
|
---|
| 74 | child2[i] = tmp;
|
---|
| 75 | }
|
---|
| 76 | }
|
---|
| 77 |
|
---|
| 78 | return Tuple.Create(child1, child2);
|
---|
| 79 | }
|
---|
| 80 |
|
---|
| 81 | private static double Get_Betaq(double rand, double alpha, double eta)
|
---|
| 82 | {
|
---|
| 83 | double betaq;
|
---|
| 84 | if (rand <= (1.0 / alpha))
|
---|
| 85 | betaq = Math.Pow((rand * alpha), (1.0 / (eta + 1.0)));
|
---|
| 86 | else
|
---|
| 87 | betaq = Math.Pow((1.0 / (2.0 - rand * alpha)), (1.0 / (eta + 1.0)));
|
---|
| 88 | return betaq;
|
---|
| 89 | }
|
---|
| 90 | }
|
---|
| 91 | } |
---|