1 | using System;
|
---|
2 | using System.Collections.Generic;
|
---|
3 | using System.Linq;
|
---|
4 | using HEAL.Attic;
|
---|
5 | using HeuristicLab.Common;
|
---|
6 | using HeuristicLab.Core;
|
---|
7 | using HeuristicLab.Optimization;
|
---|
8 |
|
---|
9 | namespace HeuristicLab.Algorithms.NSGA3
|
---|
10 | {
|
---|
11 | [StorableType("53158EA5-4D1C-42DB-90F5-EC555EC0A450")]
|
---|
12 | public class NSGA3Selection : IDeepCloneable
|
---|
13 | {
|
---|
14 | private const double EPSILON = 10e-6; // a tiny number that is greater than 0
|
---|
15 |
|
---|
16 | [Storable]
|
---|
17 | private int numberOfObjectives;
|
---|
18 |
|
---|
19 | [Storable]
|
---|
20 | private bool[] maximization;
|
---|
21 |
|
---|
22 | [Storable]
|
---|
23 | private int populationSize;
|
---|
24 |
|
---|
25 | [Storable]
|
---|
26 | private IRandom random;
|
---|
27 |
|
---|
28 | [Storable]
|
---|
29 | private bool dominateOnEqualQualities;
|
---|
30 |
|
---|
31 | [StorableConstructor]
|
---|
32 | public NSGA3Selection(StorableConstructorFlag _) { }
|
---|
33 |
|
---|
34 | public NSGA3Selection(int numberOfObjectives, bool[] maximization, int populationSize, IRandom random, bool dominateOnEqualQualities)
|
---|
35 | {
|
---|
36 | if (maximization == null) throw new ArgumentNullException(nameof(maximization));
|
---|
37 | if (random == null) throw new ArgumentNullException(nameof(random));
|
---|
38 | if (numberOfObjectives != maximization.Length) throw new ArgumentException($"{nameof(numberOfObjectives)} and the length of {nameof(maximization)} do not match.");
|
---|
39 | if (populationSize < 1) throw new ArgumentOutOfRangeException($"{nameof(populationSize)} has to be >= 1.");
|
---|
40 |
|
---|
41 | this.numberOfObjectives = numberOfObjectives;
|
---|
42 | this.maximization = maximization;
|
---|
43 | this.populationSize = populationSize;
|
---|
44 | this.random = random;
|
---|
45 | this.dominateOnEqualQualities = dominateOnEqualQualities;
|
---|
46 | }
|
---|
47 |
|
---|
48 | public NSGA3Selection(NSGA3Selection other, Cloner cloner)
|
---|
49 | {
|
---|
50 | numberOfObjectives = other.numberOfObjectives;
|
---|
51 | maximization = new bool[other.maximization.Length];
|
---|
52 | Array.Copy(other.maximization, maximization, maximization.Length);
|
---|
53 | populationSize = other.populationSize;
|
---|
54 | random = cloner.Clone(other.random);
|
---|
55 | dominateOnEqualQualities = other.dominateOnEqualQualities;
|
---|
56 | }
|
---|
57 |
|
---|
58 | public IDeepCloneable Clone(Cloner cloner)
|
---|
59 | {
|
---|
60 | return new NSGA3Selection(this, cloner);
|
---|
61 | }
|
---|
62 |
|
---|
63 | public object Clone()
|
---|
64 | {
|
---|
65 | return new Cloner().Clone(this);
|
---|
66 | }
|
---|
67 |
|
---|
68 | /// <summary>
|
---|
69 | /// Select the solutions for the next generation from <see cref="rt" /> according to the
|
---|
70 | /// NSGA-III algorithm.
|
---|
71 | /// </summary>
|
---|
72 | /// <param name="rt">The current generation and its mutated children.</param>
|
---|
73 | /// <param name="referencePoints"></param>
|
---|
74 | /// <returns></returns>
|
---|
75 | public List<Solution> SelectSolutionsForNextGeneration(List<Solution> rt, List<ReferencePoint> referencePoints)
|
---|
76 | {
|
---|
77 | List<Solution> st = new List<Solution>();
|
---|
78 |
|
---|
79 | // Do non-dominated sort
|
---|
80 | var qualities = Utility.ToFitnessMatrix(rt);
|
---|
81 |
|
---|
82 | // compute the pareto fronts using the DominationCalculator
|
---|
83 | List<List<Solution>> fronts = DominationCalculator<Solution>.CalculateAllParetoFronts(rt.ToArray(), qualities, maximization, out int[] rank, dominateOnEqualQualities)
|
---|
84 | .Select(list => new List<Solution>(list.Select(pair => pair.Item1))).ToList();
|
---|
85 |
|
---|
86 | int last = 0; // last front to be included
|
---|
87 | while (st.Count < populationSize)
|
---|
88 | {
|
---|
89 | st = Utility.Concat(st, fronts[last++]);
|
---|
90 | }
|
---|
91 |
|
---|
92 | // remove useless fronts
|
---|
93 | fronts.RemoveRange(last, fronts.Count - last);
|
---|
94 |
|
---|
95 | List<Solution> nextGeneration = new List<Solution>();
|
---|
96 | if (st.Count == populationSize)
|
---|
97 | { // no special selection needs to be done
|
---|
98 | nextGeneration = st;
|
---|
99 | }
|
---|
100 | else
|
---|
101 | {
|
---|
102 | // Add every front to the next generation list except for the one that is added only partially
|
---|
103 | nextGeneration = new List<Solution>();
|
---|
104 | for (int f = 0; f < last - 1; f++)
|
---|
105 | nextGeneration = Utility.Concat(nextGeneration, fronts[f]);
|
---|
106 |
|
---|
107 | int k = populationSize - nextGeneration.Count;
|
---|
108 | Normalize(rt, fronts);
|
---|
109 | Associate(fronts, referencePoints);
|
---|
110 | List<Solution> solutionsToAdd = Niching(k, referencePoints, random);
|
---|
111 | nextGeneration = Utility.Concat(nextGeneration, solutionsToAdd);
|
---|
112 | }
|
---|
113 |
|
---|
114 | return nextGeneration;
|
---|
115 | }
|
---|
116 |
|
---|
117 | private void Normalize(List<Solution> solutions, List<List<Solution>> fronts)
|
---|
118 | {
|
---|
119 | // Find the ideal point
|
---|
120 | double[] idealPoint = TranslateObjectives(solutions, fronts[0]);
|
---|
121 |
|
---|
122 | // Find the extreme points
|
---|
123 | List<Solution> extremePoints = GetExtremePoints(fronts[0]);
|
---|
124 |
|
---|
125 | // Compute intercepts
|
---|
126 | double[] intercepts = GetIntercepts(extremePoints, fronts[0]);
|
---|
127 |
|
---|
128 | // Normalize objectives
|
---|
129 | NormalizeObjectives(solutions, intercepts, idealPoint);
|
---|
130 | }
|
---|
131 |
|
---|
132 | private double[] TranslateObjectives(List<Solution> solutions, List<Solution> firstFront)
|
---|
133 | {
|
---|
134 | double[] idealPoint = new double[numberOfObjectives];
|
---|
135 | foreach (var solution in solutions)
|
---|
136 | {
|
---|
137 | if (solution.NormalizedObjectives == null) solution.NormalizedObjectives = new double[numberOfObjectives];
|
---|
138 | }
|
---|
139 |
|
---|
140 | for (int j = 0; j < numberOfObjectives; j++)
|
---|
141 | {
|
---|
142 | // Compute ideal point
|
---|
143 | idealPoint[j] = Utility.Min(s => s.Objectives[j], firstFront);
|
---|
144 |
|
---|
145 | // Translate objectives and save the modified fitness values in NormalizedObjectives
|
---|
146 | foreach (var solution in solutions)
|
---|
147 | solution.NormalizedObjectives[j] = solution.Objectives[j] - idealPoint[j];
|
---|
148 | }
|
---|
149 |
|
---|
150 | return idealPoint;
|
---|
151 | }
|
---|
152 |
|
---|
153 | private List<Solution> GetExtremePoints(List<Solution> firstFront)
|
---|
154 | {
|
---|
155 | List<Solution> extremePoints = new List<Solution>(numberOfObjectives);
|
---|
156 | for (int j = 0; j < numberOfObjectives; j++)
|
---|
157 | {
|
---|
158 | // Compute extreme points
|
---|
159 | double[] weights = new double[numberOfObjectives];
|
---|
160 | for (int i = 0; i < numberOfObjectives; i++) weights[i] = EPSILON;
|
---|
161 | weights[j] = 1;
|
---|
162 |
|
---|
163 | var extremePoint = Utility.ArgMin(s => ASF(s.NormalizedObjectives, weights), firstFront);
|
---|
164 | extremePoints.Add(extremePoint);
|
---|
165 | }
|
---|
166 |
|
---|
167 | return extremePoints;
|
---|
168 | }
|
---|
169 |
|
---|
170 | private double ASF(double[] convertedFitness, double[] weight)
|
---|
171 | {
|
---|
172 | var dims = Enumerable.Range(0, numberOfObjectives);
|
---|
173 |
|
---|
174 | return Utility.Max((dim) => convertedFitness[dim] / weight[dim], dims);
|
---|
175 | }
|
---|
176 |
|
---|
177 | private double[] GetIntercepts(List<Solution> extremePoints, List<Solution> solutions)
|
---|
178 | {
|
---|
179 | // Check whether there are duplicate extreme points. This might happen but the original
|
---|
180 | // paper does not mention how to deal with it.
|
---|
181 | bool duplicate = false;
|
---|
182 | for (int i = 0; !duplicate && i < extremePoints.Count; i++)
|
---|
183 | {
|
---|
184 | for (int j = i + 1; !duplicate && j < extremePoints.Count; j++)
|
---|
185 | {
|
---|
186 | duplicate = extremePoints[i] == extremePoints[j];
|
---|
187 | }
|
---|
188 | }
|
---|
189 |
|
---|
190 | double[] intercepts = new double[numberOfObjectives];
|
---|
191 |
|
---|
192 | bool negative_intercept = false;
|
---|
193 | if (!duplicate)
|
---|
194 | {
|
---|
195 | // Find the equation of the hyperplane
|
---|
196 | List<double> b = new List<double>(Enumerable.Repeat(1.0, numberOfObjectives));
|
---|
197 |
|
---|
198 | List<List<double>> a = new List<List<double>>(extremePoints.Count);
|
---|
199 |
|
---|
200 | for (int i = 0; i < extremePoints.Count; i++)
|
---|
201 | {
|
---|
202 | List<double> convertedFitness = new List<double>(extremePoints[i].NormalizedObjectives);
|
---|
203 | a.Add(convertedFitness);
|
---|
204 | }
|
---|
205 | List<double> x = GaussianElimination(a, b);
|
---|
206 |
|
---|
207 | // Find intercepts
|
---|
208 | for (int i = 0; i < intercepts.Length; i++)
|
---|
209 | {
|
---|
210 | intercepts[i] = 1.0 / x[i];
|
---|
211 |
|
---|
212 | if (x[i] < 0)
|
---|
213 | {
|
---|
214 | negative_intercept = true;
|
---|
215 | break;
|
---|
216 | }
|
---|
217 | }
|
---|
218 | }
|
---|
219 |
|
---|
220 | // follow the method in Yuan et al. (GECCO 2015)
|
---|
221 | if (duplicate || negative_intercept)
|
---|
222 | {
|
---|
223 | double[] maxObjectives = FindMaxObjectives(solutions);
|
---|
224 | for (int i = 0; i < intercepts.Length; i++)
|
---|
225 | intercepts[i] = maxObjectives[i];
|
---|
226 | }
|
---|
227 |
|
---|
228 | return intercepts;
|
---|
229 | }
|
---|
230 |
|
---|
231 | private List<double> GaussianElimination(List<List<double>> a, List<double> b)
|
---|
232 | {
|
---|
233 | List<double> x = new List<double>();
|
---|
234 |
|
---|
235 | int n = a.Count;
|
---|
236 | for (int i = 0; i < n; i++)
|
---|
237 | a[i].Add(b[i]);
|
---|
238 |
|
---|
239 | for (int @base = 0; @base < n - 1; @base++)
|
---|
240 | for (int target = @base + 1; target < n; target++)
|
---|
241 | {
|
---|
242 | double ratio = a[target][@base] / a[@base][@base];
|
---|
243 | for (int term = 0; term < a[@base].Count; term++)
|
---|
244 | a[target][term] = a[target][term] - a[@base][term] * ratio;
|
---|
245 | }
|
---|
246 |
|
---|
247 | for (int i = 0; i < n; i++)
|
---|
248 | x.Add(0.0);
|
---|
249 |
|
---|
250 | for (int i = n - 1; i >= 0; i--)
|
---|
251 | {
|
---|
252 | for (int known = i + 1; known < n; known++)
|
---|
253 | a[i][n] = a[i][n] - a[i][known] * x[known];
|
---|
254 | x[i] = a[i][n] / a[i][i];
|
---|
255 | }
|
---|
256 |
|
---|
257 | return x;
|
---|
258 | }
|
---|
259 |
|
---|
260 | private double[] FindMaxObjectives(List<Solution> solutions)
|
---|
261 | {
|
---|
262 | double[] maxPoint = new double[numberOfObjectives];
|
---|
263 | for (int i = 0; i < maxPoint.Length; i++) maxPoint[i] = double.MinValue;
|
---|
264 |
|
---|
265 | for (int f = 0; f < numberOfObjectives; f++)
|
---|
266 | {
|
---|
267 | maxPoint[f] = Utility.Max(s => s.Objectives[f], solutions);
|
---|
268 | }
|
---|
269 |
|
---|
270 | return maxPoint;
|
---|
271 | }
|
---|
272 |
|
---|
273 | private void NormalizeObjectives(List<Solution> solutions, double[] intercepts, double[] idealPoint)
|
---|
274 | {
|
---|
275 | foreach (var solution in solutions)
|
---|
276 | {
|
---|
277 | for (int i = 0; i < numberOfObjectives; i++)
|
---|
278 | {
|
---|
279 | if (Math.Abs(intercepts[i] - idealPoint[i]) > 10e-10)
|
---|
280 | {
|
---|
281 | solution.NormalizedObjectives[i] = solution.NormalizedObjectives[i] / (intercepts[i] - idealPoint[i]);
|
---|
282 | }
|
---|
283 | else
|
---|
284 | {
|
---|
285 | solution.NormalizedObjectives[i] = solution.NormalizedObjectives[i] / 10e-10;
|
---|
286 | }
|
---|
287 | }
|
---|
288 | }
|
---|
289 | }
|
---|
290 |
|
---|
291 | private void Associate(List<List<Solution>> fronts, List<ReferencePoint> referencePoints)
|
---|
292 | {
|
---|
293 | for (int f = 0; f < fronts.Count; f++)
|
---|
294 | {
|
---|
295 | foreach (var solution in fronts[f])
|
---|
296 | {
|
---|
297 | // find reference point for which the perpendicular distance to the current
|
---|
298 | // solution is the lowest
|
---|
299 | var rpAndDist = Utility.MinArgMin(rp => GetPerpendicularDistance(rp.Values, solution.NormalizedObjectives), referencePoints);
|
---|
300 | // associated reference point
|
---|
301 | var arp = rpAndDist.Item1;
|
---|
302 | // distance to that reference point
|
---|
303 | var dist = rpAndDist.Item2;
|
---|
304 |
|
---|
305 | if (f + 1 != fronts.Count)
|
---|
306 | {
|
---|
307 | arp.NumberOfAssociatedSolutions++;
|
---|
308 | }
|
---|
309 | else
|
---|
310 | {
|
---|
311 | arp.AddPotentialAssociatedSolution(solution, dist);
|
---|
312 | }
|
---|
313 | }
|
---|
314 | }
|
---|
315 | }
|
---|
316 |
|
---|
317 | private double GetPerpendicularDistance(double[] direction, double[] point)
|
---|
318 | {
|
---|
319 | double numerator = 0;
|
---|
320 | double denominator = 0;
|
---|
321 | for (int i = 0; i < direction.Length; i++)
|
---|
322 | {
|
---|
323 | numerator += direction[i] * point[i];
|
---|
324 | denominator += Math.Pow(direction[i], 2);
|
---|
325 | }
|
---|
326 | double k = numerator / denominator;
|
---|
327 |
|
---|
328 | double d = 0;
|
---|
329 | for (int i = 0; i < direction.Length; i++)
|
---|
330 | {
|
---|
331 | d += Math.Pow(k * direction[i] - point[i], 2);
|
---|
332 | }
|
---|
333 | return Math.Sqrt(d);
|
---|
334 | }
|
---|
335 |
|
---|
336 | private List<Solution> Niching(int k, List<ReferencePoint> referencePoints, IRandom random)
|
---|
337 | {
|
---|
338 | List<Solution> solutions = new List<Solution>();
|
---|
339 | while (solutions.Count != k)
|
---|
340 | {
|
---|
341 | ReferencePoint min_rp = FindNicheReferencePoint(referencePoints, random);
|
---|
342 |
|
---|
343 | Solution chosen = SelectClusterMember(min_rp);
|
---|
344 | if (chosen == null)
|
---|
345 | {
|
---|
346 | referencePoints.Remove(min_rp);
|
---|
347 | }
|
---|
348 | else
|
---|
349 | {
|
---|
350 | min_rp.NumberOfAssociatedSolutions++;
|
---|
351 | min_rp.RemovePotentialAssociatedSolution(chosen);
|
---|
352 | solutions.Add(chosen);
|
---|
353 | }
|
---|
354 | }
|
---|
355 |
|
---|
356 | return solutions;
|
---|
357 | }
|
---|
358 |
|
---|
359 | private ReferencePoint FindNicheReferencePoint(List<ReferencePoint> referencePoints, IRandom random)
|
---|
360 | {
|
---|
361 | // the minimum number of associated solutions for a reference point over all reference points
|
---|
362 | int minNumber = Utility.Min(rp => rp.NumberOfAssociatedSolutions, referencePoints);
|
---|
363 |
|
---|
364 | var minReferencePoints = new List<ReferencePoint>(referencePoints.Where(r => r.NumberOfAssociatedSolutions == minNumber));
|
---|
365 | if (minReferencePoints.Count == 1) return minReferencePoints.Single();
|
---|
366 | else return minReferencePoints[random.Next(minReferencePoints.Count)];
|
---|
367 | }
|
---|
368 |
|
---|
369 | private Solution SelectClusterMember(ReferencePoint referencePoint)
|
---|
370 | {
|
---|
371 | Solution chosen = null;
|
---|
372 | if (referencePoint.HasPotentialMember())
|
---|
373 | {
|
---|
374 | if (referencePoint.NumberOfAssociatedSolutions == 0)
|
---|
375 | chosen = referencePoint.FindClosestMember();
|
---|
376 | else
|
---|
377 | chosen = referencePoint.RandomMember();
|
---|
378 | }
|
---|
379 | return chosen;
|
---|
380 | }
|
---|
381 | }
|
---|
382 | } |
---|