1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System.Collections.Generic;
|
---|
23 | using HeuristicLab.Problems.DataAnalysis;
|
---|
24 |
|
---|
25 | namespace HeuristicLab.Problems.Instances.DataAnalysis {
|
---|
26 | public abstract class ArtificialClassificationDataDescriptor : IDataDescriptor {
|
---|
27 | public abstract string Name { get; }
|
---|
28 | public abstract string Description { get; }
|
---|
29 |
|
---|
30 | protected abstract string TargetVariable { get; }
|
---|
31 | protected abstract string[] VariableNames { get; }
|
---|
32 | protected abstract string[] AllowedInputVariables { get; }
|
---|
33 | protected abstract int TrainingPartitionStart { get; }
|
---|
34 | protected abstract int TrainingPartitionEnd { get; }
|
---|
35 | protected abstract int TestPartitionStart { get; }
|
---|
36 | protected abstract int TestPartitionEnd { get; }
|
---|
37 |
|
---|
38 | public IClassificationProblemData GenerateClassificationData() {
|
---|
39 | Dataset dataset = new Dataset(VariableNames, this.GenerateValues());
|
---|
40 |
|
---|
41 | ClassificationProblemData claData = new ClassificationProblemData(dataset, AllowedInputVariables, TargetVariable);
|
---|
42 | claData.Name = this.Name;
|
---|
43 | claData.Description = this.Description;
|
---|
44 | claData.TrainingPartition.Start = this.TrainingPartitionStart;
|
---|
45 | claData.TrainingPartition.End = this.TrainingPartitionEnd;
|
---|
46 | claData.TestPartition.Start = this.TestPartitionStart;
|
---|
47 | claData.TestPartition.End = this.TestPartitionEnd;
|
---|
48 | return claData;
|
---|
49 | }
|
---|
50 |
|
---|
51 | protected abstract List<List<double>> GenerateValues();
|
---|
52 | }
|
---|
53 | }
|
---|