[15638] | 1 | #region License Information
|
---|
| 2 |
|
---|
| 3 | /* HeuristicLab
|
---|
| 4 | * Copyright (C) 2002-2018 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 5 | *
|
---|
| 6 | * This file is part of HeuristicLab.
|
---|
| 7 | *
|
---|
| 8 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 9 | * it under the terms of the GNU General Public License as published by
|
---|
| 10 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 11 | * (at your option) any later version.
|
---|
| 12 | *
|
---|
| 13 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 14 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 15 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 16 | * GNU General Public License for more details.
|
---|
| 17 | *
|
---|
| 18 | * You should have received a copy of the GNU General Public License
|
---|
| 19 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 20 | */
|
---|
| 21 |
|
---|
| 22 | #endregion
|
---|
| 23 |
|
---|
| 24 | using System;
|
---|
| 25 | using System.Collections.Generic;
|
---|
| 26 | using System.Linq;
|
---|
| 27 | using HeuristicLab.Common;
|
---|
| 28 | using HeuristicLab.Core;
|
---|
| 29 | using HeuristicLab.Data;
|
---|
| 30 | using HeuristicLab.Parameters;
|
---|
| 31 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
| 32 | using HeuristicLab.Random;
|
---|
| 33 |
|
---|
| 34 | namespace HeuristicLab.Problems.DataAnalysis {
|
---|
| 35 | [StorableClass]
|
---|
| 36 | [Item("ClassificationSolution Impacts Calculator", "Calculation of the impacts of input variables for any classification solution")]
|
---|
| 37 | public sealed class ClassificationSolutionVariableImpactsCalculator : ParameterizedNamedItem {
|
---|
| 38 | public enum ReplacementMethodEnum {
|
---|
| 39 | Median,
|
---|
| 40 | Average,
|
---|
| 41 | Shuffle,
|
---|
| 42 | Noise
|
---|
| 43 | }
|
---|
| 44 | public enum FactorReplacementMethodEnum {
|
---|
| 45 | Best,
|
---|
| 46 | Mode,
|
---|
| 47 | Shuffle
|
---|
| 48 | }
|
---|
| 49 | public enum DataPartitionEnum {
|
---|
| 50 | Training,
|
---|
| 51 | Test,
|
---|
| 52 | All
|
---|
| 53 | }
|
---|
| 54 |
|
---|
| 55 | private const string ReplacementParameterName = "Replacement Method";
|
---|
| 56 | private const string DataPartitionParameterName = "DataPartition";
|
---|
| 57 |
|
---|
| 58 | public IFixedValueParameter<EnumValue<ReplacementMethodEnum>> ReplacementParameter {
|
---|
| 59 | get { return (IFixedValueParameter<EnumValue<ReplacementMethodEnum>>)Parameters[ReplacementParameterName]; }
|
---|
| 60 | }
|
---|
| 61 | public IFixedValueParameter<EnumValue<DataPartitionEnum>> DataPartitionParameter {
|
---|
| 62 | get { return (IFixedValueParameter<EnumValue<DataPartitionEnum>>)Parameters[DataPartitionParameterName]; }
|
---|
| 63 | }
|
---|
| 64 |
|
---|
| 65 | public ReplacementMethodEnum ReplacementMethod {
|
---|
| 66 | get { return ReplacementParameter.Value.Value; }
|
---|
| 67 | set { ReplacementParameter.Value.Value = value; }
|
---|
| 68 | }
|
---|
| 69 | public DataPartitionEnum DataPartition {
|
---|
| 70 | get { return DataPartitionParameter.Value.Value; }
|
---|
| 71 | set { DataPartitionParameter.Value.Value = value; }
|
---|
| 72 | }
|
---|
| 73 |
|
---|
| 74 |
|
---|
| 75 | [StorableConstructor]
|
---|
| 76 | private ClassificationSolutionVariableImpactsCalculator(bool deserializing) : base(deserializing) { }
|
---|
| 77 | private ClassificationSolutionVariableImpactsCalculator(ClassificationSolutionVariableImpactsCalculator original, Cloner cloner)
|
---|
| 78 | : base(original, cloner) { }
|
---|
| 79 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
| 80 | return new ClassificationSolutionVariableImpactsCalculator(this, cloner);
|
---|
| 81 | }
|
---|
| 82 |
|
---|
| 83 | public ClassificationSolutionVariableImpactsCalculator()
|
---|
| 84 | : base() {
|
---|
| 85 | Parameters.Add(new FixedValueParameter<EnumValue<ReplacementMethodEnum>>(ReplacementParameterName, "The replacement method for variables during impact calculation.", new EnumValue<ReplacementMethodEnum>(ReplacementMethodEnum.Median)));
|
---|
| 86 | Parameters.Add(new FixedValueParameter<EnumValue<DataPartitionEnum>>(DataPartitionParameterName, "The data partition on which the impacts are calculated.", new EnumValue<DataPartitionEnum>(DataPartitionEnum.Training)));
|
---|
| 87 | }
|
---|
| 88 |
|
---|
| 89 | //mkommend: annoying name clash with static method, open to better naming suggestions
|
---|
| 90 | public IEnumerable<Tuple<string, double>> Calculate(IClassificationSolution solution) {
|
---|
| 91 | return CalculateImpacts(solution, DataPartition, ReplacementMethod);
|
---|
| 92 | }
|
---|
| 93 |
|
---|
| 94 | public static IEnumerable<Tuple<string, double>> CalculateImpacts(
|
---|
| 95 | IClassificationSolution solution,
|
---|
| 96 | DataPartitionEnum data = DataPartitionEnum.Training,
|
---|
| 97 | ReplacementMethodEnum replacementMethod = ReplacementMethodEnum.Median,
|
---|
| 98 | FactorReplacementMethodEnum factorReplacementMethod = FactorReplacementMethodEnum.Best) {
|
---|
| 99 |
|
---|
| 100 | var problemData = solution.ProblemData;
|
---|
| 101 | var dataset = problemData.Dataset;
|
---|
[16141] | 102 | var model = (IClassificationModel)solution.Model.Clone(); //mkommend: clone of model is necessary, because the thresholds for IDiscriminantClassificationModels are updated
|
---|
[15638] | 103 |
|
---|
| 104 | IEnumerable<int> rows;
|
---|
| 105 | IEnumerable<double> targetValues;
|
---|
| 106 | double originalAccuracy;
|
---|
| 107 |
|
---|
| 108 | OnlineCalculatorError error;
|
---|
| 109 |
|
---|
| 110 | switch (data) {
|
---|
| 111 | case DataPartitionEnum.All:
|
---|
| 112 | rows = problemData.AllIndices;
|
---|
| 113 | targetValues = problemData.Dataset.GetDoubleValues(problemData.TargetVariable, problemData.AllIndices).ToList();
|
---|
| 114 | originalAccuracy = OnlineAccuracyCalculator.Calculate(targetValues, solution.EstimatedClassValues, out error);
|
---|
| 115 | if (error != OnlineCalculatorError.None) throw new InvalidOperationException("Error during accuracy calculation.");
|
---|
| 116 | break;
|
---|
| 117 | case DataPartitionEnum.Training:
|
---|
| 118 | rows = problemData.TrainingIndices;
|
---|
| 119 | targetValues = problemData.Dataset.GetDoubleValues(problemData.TargetVariable, problemData.TrainingIndices).ToList();
|
---|
| 120 | originalAccuracy = OnlineAccuracyCalculator.Calculate(targetValues, solution.EstimatedTrainingClassValues, out error);
|
---|
| 121 | if (error != OnlineCalculatorError.None) throw new InvalidOperationException("Error during accuracy calculation.");
|
---|
| 122 | break;
|
---|
| 123 | case DataPartitionEnum.Test:
|
---|
| 124 | rows = problemData.TestIndices;
|
---|
| 125 | targetValues = problemData.Dataset.GetDoubleValues(problemData.TargetVariable, problemData.TestIndices).ToList();
|
---|
| 126 | originalAccuracy = OnlineAccuracyCalculator.Calculate(targetValues, solution.EstimatedTestClassValues, out error);
|
---|
| 127 | if (error != OnlineCalculatorError.None) throw new InvalidOperationException("Error during accuracy calculation.");
|
---|
| 128 | break;
|
---|
| 129 | default: throw new ArgumentException(string.Format("DataPartition {0} cannot be handled.", data));
|
---|
| 130 | }
|
---|
| 131 |
|
---|
| 132 | var impacts = new Dictionary<string, double>();
|
---|
| 133 | var modifiableDataset = ((Dataset)dataset).ToModifiable();
|
---|
| 134 |
|
---|
| 135 | var inputvariables = new HashSet<string>(problemData.AllowedInputVariables.Union(solution.Model.VariablesUsedForPrediction));
|
---|
| 136 | var allowedInputVariables = dataset.VariableNames.Where(v => inputvariables.Contains(v)).ToList();
|
---|
| 137 |
|
---|
| 138 | // calculate impacts for double variables
|
---|
| 139 | foreach (var inputVariable in allowedInputVariables.Where(problemData.Dataset.VariableHasType<double>)) {
|
---|
[16141] | 140 | var newEstimates = EvaluateModelWithReplacedVariable(model, inputVariable, modifiableDataset, rows, replacementMethod);
|
---|
[15638] | 141 | var newAccuracy = OnlineAccuracyCalculator.Calculate(targetValues, newEstimates, out error);
|
---|
| 142 | if (error != OnlineCalculatorError.None) throw new InvalidOperationException("Error during R² calculation with replaced inputs.");
|
---|
| 143 |
|
---|
| 144 | impacts[inputVariable] = originalAccuracy - newAccuracy;
|
---|
| 145 | }
|
---|
| 146 |
|
---|
| 147 | // calculate impacts for string variables
|
---|
| 148 | foreach (var inputVariable in allowedInputVariables.Where(problemData.Dataset.VariableHasType<string>)) {
|
---|
| 149 | if (factorReplacementMethod == FactorReplacementMethodEnum.Best) {
|
---|
| 150 | // try replacing with all possible values and find the best replacement value
|
---|
| 151 | var smallestImpact = double.PositiveInfinity;
|
---|
| 152 | foreach (var repl in problemData.Dataset.GetStringValues(inputVariable, rows).Distinct()) {
|
---|
[16141] | 153 | var newEstimates = EvaluateModelWithReplacedVariable(model, inputVariable, modifiableDataset, rows,
|
---|
[15638] | 154 | Enumerable.Repeat(repl, dataset.Rows));
|
---|
| 155 | var newAccuracy = OnlineAccuracyCalculator.Calculate(targetValues, newEstimates, out error);
|
---|
| 156 | if (error != OnlineCalculatorError.None)
|
---|
| 157 | throw new InvalidOperationException("Error during accuracy calculation with replaced inputs.");
|
---|
| 158 |
|
---|
| 159 | var impact = originalAccuracy - newAccuracy;
|
---|
| 160 | if (impact < smallestImpact) smallestImpact = impact;
|
---|
| 161 | }
|
---|
| 162 | impacts[inputVariable] = smallestImpact;
|
---|
| 163 | } else {
|
---|
| 164 | // for replacement methods shuffle and mode
|
---|
| 165 | // calculate impacts for factor variables
|
---|
| 166 |
|
---|
[16141] | 167 | var newEstimates = EvaluateModelWithReplacedVariable(model, inputVariable, modifiableDataset, rows,
|
---|
[15638] | 168 | factorReplacementMethod);
|
---|
| 169 | var newAccuracy = OnlineAccuracyCalculator.Calculate(targetValues, newEstimates, out error);
|
---|
| 170 | if (error != OnlineCalculatorError.None)
|
---|
| 171 | throw new InvalidOperationException("Error during accuracy calculation with replaced inputs.");
|
---|
| 172 |
|
---|
| 173 | impacts[inputVariable] = originalAccuracy - newAccuracy;
|
---|
| 174 | }
|
---|
| 175 | } // foreach
|
---|
| 176 | return impacts.OrderByDescending(i => i.Value).Select(i => Tuple.Create(i.Key, i.Value));
|
---|
| 177 | }
|
---|
| 178 |
|
---|
| 179 | private static IEnumerable<double> EvaluateModelWithReplacedVariable(IClassificationModel model, string variable, ModifiableDataset dataset, IEnumerable<int> rows, ReplacementMethodEnum replacement = ReplacementMethodEnum.Median) {
|
---|
| 180 | var originalValues = dataset.GetReadOnlyDoubleValues(variable).ToList();
|
---|
| 181 | double replacementValue;
|
---|
| 182 | List<double> replacementValues;
|
---|
| 183 | IRandom rand;
|
---|
| 184 |
|
---|
| 185 | switch (replacement) {
|
---|
| 186 | case ReplacementMethodEnum.Median:
|
---|
| 187 | replacementValue = rows.Select(r => originalValues[r]).Median();
|
---|
| 188 | replacementValues = Enumerable.Repeat(replacementValue, dataset.Rows).ToList();
|
---|
| 189 | break;
|
---|
| 190 | case ReplacementMethodEnum.Average:
|
---|
| 191 | replacementValue = rows.Select(r => originalValues[r]).Average();
|
---|
| 192 | replacementValues = Enumerable.Repeat(replacementValue, dataset.Rows).ToList();
|
---|
| 193 | break;
|
---|
| 194 | case ReplacementMethodEnum.Shuffle:
|
---|
| 195 | // new var has same empirical distribution but the relation to y is broken
|
---|
| 196 | rand = new FastRandom(31415);
|
---|
| 197 | // prepare a complete column for the dataset
|
---|
| 198 | replacementValues = Enumerable.Repeat(double.NaN, dataset.Rows).ToList();
|
---|
| 199 | // shuffle only the selected rows
|
---|
| 200 | var shuffledValues = rows.Select(r => originalValues[r]).Shuffle(rand).ToList();
|
---|
| 201 | int i = 0;
|
---|
| 202 | // update column values
|
---|
| 203 | foreach (var r in rows) {
|
---|
| 204 | replacementValues[r] = shuffledValues[i++];
|
---|
| 205 | }
|
---|
| 206 | break;
|
---|
| 207 | case ReplacementMethodEnum.Noise:
|
---|
| 208 | var avg = rows.Select(r => originalValues[r]).Average();
|
---|
| 209 | var stdDev = rows.Select(r => originalValues[r]).StandardDeviation();
|
---|
| 210 | rand = new FastRandom(31415);
|
---|
| 211 | // prepare a complete column for the dataset
|
---|
| 212 | replacementValues = Enumerable.Repeat(double.NaN, dataset.Rows).ToList();
|
---|
| 213 | // update column values
|
---|
| 214 | foreach (var r in rows) {
|
---|
| 215 | replacementValues[r] = NormalDistributedRandom.NextDouble(rand, avg, stdDev);
|
---|
| 216 | }
|
---|
| 217 | break;
|
---|
| 218 |
|
---|
| 219 | default:
|
---|
| 220 | throw new ArgumentException(string.Format("ReplacementMethod {0} cannot be handled.", replacement));
|
---|
| 221 | }
|
---|
| 222 |
|
---|
| 223 | return EvaluateModelWithReplacedVariable(model, variable, dataset, rows, replacementValues);
|
---|
| 224 | }
|
---|
| 225 |
|
---|
| 226 | private static IEnumerable<double> EvaluateModelWithReplacedVariable(
|
---|
| 227 | IClassificationModel model, string variable, ModifiableDataset dataset,
|
---|
| 228 | IEnumerable<int> rows,
|
---|
| 229 | FactorReplacementMethodEnum replacement = FactorReplacementMethodEnum.Shuffle) {
|
---|
| 230 | var originalValues = dataset.GetReadOnlyStringValues(variable).ToList();
|
---|
| 231 | List<string> replacementValues;
|
---|
| 232 | IRandom rand;
|
---|
| 233 |
|
---|
| 234 | switch (replacement) {
|
---|
| 235 | case FactorReplacementMethodEnum.Mode:
|
---|
| 236 | var mostCommonValue = rows.Select(r => originalValues[r])
|
---|
| 237 | .GroupBy(v => v)
|
---|
| 238 | .OrderByDescending(g => g.Count())
|
---|
| 239 | .First().Key;
|
---|
| 240 | replacementValues = Enumerable.Repeat(mostCommonValue, dataset.Rows).ToList();
|
---|
| 241 | break;
|
---|
| 242 | case FactorReplacementMethodEnum.Shuffle:
|
---|
| 243 | // new var has same empirical distribution but the relation to y is broken
|
---|
| 244 | rand = new FastRandom(31415);
|
---|
| 245 | // prepare a complete column for the dataset
|
---|
| 246 | replacementValues = Enumerable.Repeat(string.Empty, dataset.Rows).ToList();
|
---|
| 247 | // shuffle only the selected rows
|
---|
| 248 | var shuffledValues = rows.Select(r => originalValues[r]).Shuffle(rand).ToList();
|
---|
| 249 | int i = 0;
|
---|
| 250 | // update column values
|
---|
| 251 | foreach (var r in rows) {
|
---|
| 252 | replacementValues[r] = shuffledValues[i++];
|
---|
| 253 | }
|
---|
| 254 | break;
|
---|
| 255 | default:
|
---|
| 256 | throw new ArgumentException(string.Format("FactorReplacementMethod {0} cannot be handled.", replacement));
|
---|
| 257 | }
|
---|
| 258 |
|
---|
| 259 | return EvaluateModelWithReplacedVariable(model, variable, dataset, rows, replacementValues);
|
---|
| 260 | }
|
---|
| 261 |
|
---|
| 262 | private static IEnumerable<double> EvaluateModelWithReplacedVariable(IClassificationModel model, string variable,
|
---|
| 263 | ModifiableDataset dataset, IEnumerable<int> rows, IEnumerable<double> replacementValues) {
|
---|
| 264 | var originalValues = dataset.GetReadOnlyDoubleValues(variable).ToList();
|
---|
| 265 | dataset.ReplaceVariable(variable, replacementValues.ToList());
|
---|
[16141] | 266 |
|
---|
| 267 | var discModel = model as IDiscriminantFunctionClassificationModel;
|
---|
| 268 | if (discModel != null) {
|
---|
| 269 | var problemData = new ClassificationProblemData(dataset, dataset.VariableNames, model.TargetVariable);
|
---|
| 270 | discModel.RecalculateModelParameters(problemData, rows);
|
---|
| 271 | }
|
---|
| 272 |
|
---|
[15638] | 273 | //mkommend: ToList is used on purpose to avoid lazy evaluation that could result in wrong estimates due to variable replacements
|
---|
| 274 | var estimates = model.GetEstimatedClassValues(dataset, rows).ToList();
|
---|
| 275 | dataset.ReplaceVariable(variable, originalValues);
|
---|
| 276 |
|
---|
| 277 | return estimates;
|
---|
| 278 | }
|
---|
| 279 | private static IEnumerable<double> EvaluateModelWithReplacedVariable(IClassificationModel model, string variable,
|
---|
| 280 | ModifiableDataset dataset, IEnumerable<int> rows, IEnumerable<string> replacementValues) {
|
---|
| 281 | var originalValues = dataset.GetReadOnlyStringValues(variable).ToList();
|
---|
| 282 | dataset.ReplaceVariable(variable, replacementValues.ToList());
|
---|
[16141] | 283 |
|
---|
| 284 |
|
---|
| 285 | var discModel = model as IDiscriminantFunctionClassificationModel;
|
---|
| 286 | if (discModel != null) {
|
---|
| 287 | var problemData = new ClassificationProblemData(dataset, dataset.VariableNames, model.TargetVariable);
|
---|
| 288 | discModel.RecalculateModelParameters(problemData, rows);
|
---|
| 289 | }
|
---|
| 290 |
|
---|
[15638] | 291 | //mkommend: ToList is used on purpose to avoid lazy evaluation that could result in wrong estimates due to variable replacements
|
---|
| 292 | var estimates = model.GetEstimatedClassValues(dataset, rows).ToList();
|
---|
| 293 | dataset.ReplaceVariable(variable, originalValues);
|
---|
| 294 |
|
---|
| 295 | return estimates;
|
---|
| 296 | }
|
---|
| 297 | }
|
---|
| 298 | }
|
---|