Free cookie consent management tool by TermsFeed Policy Generator

source: branches/2796_SymbReg/HeuristicLab.Algorithms.DataAnalysis/3.4/MctsSymbolicRegression/MctsSymbolicRegressionStatic.cs @ 17607

Last change on this file since 17607 was 15608, checked in by gkronber, 7 years ago

#2796 removed calls to ExprStr (useful for debugging) to increase speed of search

File size: 38.4 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using System.Collections.Generic;
24using System.Diagnostics;
25using System.Linq;
26using System.Text;
27using HeuristicLab.Core;
28using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
29using HeuristicLab.Optimization;
30using HeuristicLab.Problems.DataAnalysis;
31using HeuristicLab.Problems.DataAnalysis.Symbolic;
32using HeuristicLab.Problems.DataAnalysis.Symbolic.Regression;
33using HeuristicLab.Random;
34
35namespace HeuristicLab.Algorithms.DataAnalysis.MctsSymbolicRegression {
36  public static class MctsSymbolicRegressionStatic {
37    // OBJECTIVES:
38    // 1) solve toy problems without numeric constants (to show that structure search is effective / efficient)
39    //    - e.g. Keijzer, Nguyen ... where no numeric constants are involved
40    //    - assumptions:
41    //      - we don't know the necessary operations or functions -> all available functions could be necessary
42    //      - but we do not need to tune numeric constants -> no scaling of input variables x!
43    // 2) Solve toy problems with numeric constants to make the algorithm invariant concerning variable scale.
44    //    This is important for real world applications.
45    //    - e.g. Korns or Vladislavleva problems where numeric constants are involved
46    //    - assumptions:
47    //      - any numeric constant is possible (a-priori we might assume that small abs. constants are more likely)
48    //      - standardization of variables is possible (or might be necessary) as we adjust numeric parameters of the expression anyway
49    //      - to simplify the problem we can restrict the set of functions e.g. we assume which functions are necessary for the problem instance
50    //        -> several steps: (a) polynomials, (b) rational polynomials, (c) exponential or logarithmic functions, rational functions with exponential and logarithmic parts
51    // 3) efficiency and effectiveness for real-world problems
52    //    - e.g. Tower problem
53    //    - (1) and (2) combined, structure search must be effective in combination with numeric optimization of constants
54    //   
55
56    // TODO: The samples of x1*... or x2*... do not give any information about the relevance of the interaction term x1*x2 in general!
57    //       --> E.g. if x1, x2 ~ N(0, 1) or U(-1, 1) this is trivial to show
58    //       --> Therefore, looking at roll-out statistics for arm selection (MCTS-style) is useless in the general case!
59    //       --> It is necessary to rely on other features for the arm selection.
60    //       --> TODO: Which heuristics can we apply?
61    // TODO: Solve Poly-10
62    // TODO: rename everything as this is not MCTS anymore
63    // TODO: when a path to an expression is explored first (e.g. x1 + x2)
64    //       and later we find the a longer form x1 + x1 + x2 where the number of variable references
65    //       exceeds the maximum in the automaton this leads to an error (see unit tests)
66    // TODO: unit tests for benchmark problems which contain log / exp / x^-1 but without numeric constants
67    // TODO: check if transformation of y is correct and works (Obj 2)
68    // TODO: The algorithm is not invariant to location and scale of variables.
69    //       Include offset for variables as parameter (for Objective 2)
70    // TODO: why does LM optimization converge so slowly with exp(x), log(x), and 1/x allowed (Obj 2)?
71    // TODO: support e(-x) and possibly (1/-x) (Obj 1)
72    // TODO: is it OK to initialize all constants to 1 (Obj 2)?
73    // TODO: improve memory usage
74    // TODO: analyze / improve perf of ExprHashing (canonical form for expressions)
75    // TODO: support empty test partition
76    // TODO: the algorithm should be invariant to linear transformations of the space (y = f(x') = f( Ax ) ) for invertible transformations A --> see unit tests
77    #region static API
78
79    public interface IState {
80      bool Done { get; }
81      ISymbolicRegressionModel BestModel { get; }
82      double BestSolutionTrainingQuality { get; }
83      double BestSolutionTestQuality { get; }
84      IEnumerable<ISymbolicRegressionSolution> ParetoBestModels { get; }
85      int TotalRollouts { get; }
86      int EffectiveRollouts { get; }
87      int FuncEvaluations { get; }
88      int GradEvaluations { get; } // number of gradient evaluations (* num parameters) to get a value representative of the effort comparable to the number of function evaluations
89      // TODO other stats on LM optimizer might be interesting here
90    }
91
92    // created through factory method
93    private class State : IState {
94      private const int MaxParams = 100;
95
96      // state variables used by MCTS
97      internal readonly Automaton automaton;
98      internal IRandom random { get; private set; }
99      internal readonly Tree tree;
100      internal readonly Func<byte[], int, double> evalFun;
101      // MCTS might get stuck. Track statistics on the number of effective roll-outs
102      internal int totalRollouts;
103      internal int effectiveRollouts;
104
105
106      // state variables used only internally (for eval function)
107      private readonly IRegressionProblemData problemData;
108      private readonly double[][] x;
109      private readonly double[] y;
110      private readonly double[][] testX;
111      private readonly double[] testY;
112      private readonly double[] scalingFactor;
113      private readonly double[] scalingOffset;
114      private readonly double yStdDev; // for scaling parameters (e.g. stopping condition for LM)
115      private readonly int constOptIterations;
116      private readonly double lambda; // weight of penalty term for regularization
117      private readonly double lowerEstimationLimit, upperEstimationLimit;
118      private readonly bool collectParetoOptimalModels;
119      private readonly List<ISymbolicRegressionSolution> paretoBestModels = new List<ISymbolicRegressionSolution>();
120      private readonly List<double[]> paretoFront = new List<double[]>(); // matching the models
121
122      private readonly ExpressionEvaluator evaluator, testEvaluator;
123
124      internal readonly Dictionary<Tree, List<Tree>> children = new Dictionary<Tree, List<Tree>>();
125      internal readonly Dictionary<Tree, List<Tree>> parents = new Dictionary<Tree, List<Tree>>();
126      internal readonly Dictionary<ulong, Tree> nodes = new Dictionary<ulong, Tree>();
127
128      // values for best solution
129      private double bestR;
130      private byte[] bestCode;
131      private int bestNParams;
132      private double[] bestConsts;
133
134      // stats
135      private int funcEvaluations;
136      private int gradEvaluations;
137
138      // buffers
139      private readonly double[] ones; // vector of ones (as default params)
140      private readonly double[] constsBuf;
141      private readonly double[] predBuf, testPredBuf;
142      private readonly double[][] gradBuf;
143
144      public State(IRegressionProblemData problemData, uint randSeed, int maxVariables, bool scaleVariables,
145        int constOptIterations, double lambda,
146        bool collectParetoOptimalModels = false,
147        double lowerEstimationLimit = double.MinValue, double upperEstimationLimit = double.MaxValue,
148        bool allowProdOfVars = true,
149        bool allowExp = true,
150        bool allowLog = true,
151        bool allowInv = true,
152        bool allowMultipleTerms = false) {
153
154        if (lambda < 0) throw new ArgumentException("Lambda must be larger or equal zero", "lambda");
155
156        this.problemData = problemData;
157        this.constOptIterations = constOptIterations;
158        this.lambda = lambda;
159        this.evalFun = this.Eval;
160        this.lowerEstimationLimit = lowerEstimationLimit;
161        this.upperEstimationLimit = upperEstimationLimit;
162        this.collectParetoOptimalModels = collectParetoOptimalModels;
163
164        random = new MersenneTwister(randSeed);
165
166        // prepare data for evaluation
167        double[][] x;
168        double[] y;
169        double[][] testX;
170        double[] testY;
171        double[] scalingFactor;
172        double[] scalingOffset;
173        // get training and test datasets (scale linearly based on training set if required)
174        GenerateData(problemData, scaleVariables, problemData.TrainingIndices, out x, out y, out scalingFactor, out scalingOffset);
175        GenerateData(problemData, problemData.TestIndices, scalingFactor, scalingOffset, out testX, out testY);
176        this.x = x;
177        this.y = y;
178        this.yStdDev = HeuristicLab.Common.EnumerableStatisticExtensions.StandardDeviation(y);
179        this.testX = testX;
180        this.testY = testY;
181        this.scalingFactor = scalingFactor;
182        this.scalingOffset = scalingOffset;
183        this.evaluator = new ExpressionEvaluator(y.Length, lowerEstimationLimit, upperEstimationLimit);
184        // we need a separate evaluator because the vector length for the test dataset might differ
185        this.testEvaluator = new ExpressionEvaluator(testY.Length, lowerEstimationLimit, upperEstimationLimit);
186
187        this.automaton = new Automaton(x, allowProdOfVars, allowExp, allowLog, allowInv, allowMultipleTerms, maxVariables);
188        this.tree = new Tree() {
189          state = automaton.CurrentState,
190          expr = "",
191          level = 0
192        };
193
194        // reset best solution
195        this.bestR = 0;
196        // code for default solution (constant model)
197        this.bestCode = new byte[] { (byte)OpCodes.LoadConst0, (byte)OpCodes.Exit };
198        this.bestNParams = 0;
199        this.bestConsts = null;
200
201        // init buffers
202        this.ones = Enumerable.Repeat(1.0, MaxParams).ToArray();
203        constsBuf = new double[MaxParams];
204        this.predBuf = new double[y.Length];
205        this.testPredBuf = new double[testY.Length];
206
207        this.gradBuf = Enumerable.Range(0, MaxParams).Select(_ => new double[y.Length]).ToArray();
208      }
209
210      #region IState inferface
211      public bool Done { get { return tree != null && tree.Done; } }
212
213      public double BestSolutionTrainingQuality {
214        get {
215          evaluator.Exec(bestCode, x, bestConsts, predBuf);
216          return Rho(y, predBuf);
217        }
218      }
219
220      public double BestSolutionTestQuality {
221        get {
222          testEvaluator.Exec(bestCode, testX, bestConsts, testPredBuf);
223          return Rho(testY, testPredBuf);
224        }
225      }
226
227      // takes the code of the best solution and creates and equivalent symbolic regression models
228      public ISymbolicRegressionModel BestModel {
229        get {
230          var treeGen = new SymbolicExpressionTreeGenerator(problemData.AllowedInputVariables.ToArray());
231          var interpreter = new SymbolicDataAnalysisExpressionTreeLinearInterpreter();
232
233          var t = new SymbolicExpressionTree(treeGen.Exec(bestCode, bestConsts, bestNParams, scalingFactor, scalingOffset));
234          var model = new SymbolicRegressionModel(problemData.TargetVariable, t, interpreter, lowerEstimationLimit, upperEstimationLimit);
235          model.Scale(problemData); // apply linear scaling
236          return model;
237        }
238      }
239      public IEnumerable<ISymbolicRegressionSolution> ParetoBestModels {
240        get { return paretoBestModels; }
241      }
242
243      public int TotalRollouts { get { return totalRollouts; } }
244      public int EffectiveRollouts { get { return effectiveRollouts; } }
245      public int FuncEvaluations { get { return funcEvaluations; } }
246      public int GradEvaluations { get { return gradEvaluations; } } // number of gradient evaluations (* num parameters) to get a value representative of the effort comparable to the number of function evaluations
247
248      #endregion
249
250
251#if DEBUG
252      public string ExprStr(Automaton automaton) {
253        byte[] code;
254        int nParams;
255        automaton.GetCode(out code, out nParams);
256        var generator = new SymbolicExpressionTreeGenerator(problemData.AllowedInputVariables.ToArray());
257        var @params = Enumerable.Repeat(1.0, nParams).ToArray();
258        var root = generator.Exec(code, @params, nParams, null, null);
259        var formatter = new InfixExpressionFormatter();
260        return formatter.Format(new SymbolicExpressionTree(root));
261      }
262#endif
263
264      private double Eval(byte[] code, int nParams) {
265        double[] optConsts;
266        double q;
267        Eval(code, nParams, out q, out optConsts);
268
269        // single objective best
270        if (q > bestR) {
271          bestR = q;
272          bestNParams = nParams;
273          this.bestCode = new byte[code.Length];
274          this.bestConsts = new double[bestNParams];
275
276          Array.Copy(code, bestCode, code.Length);
277          Array.Copy(optConsts, bestConsts, bestNParams);
278        }
279        if (collectParetoOptimalModels) {
280          // multi-objective best
281          var complexity = // SymbolicDataAnalysisModelComplexityCalculator.CalculateComplexity() TODO: implement Kommenda's tree complexity directly in the evaluator
282            Array.FindIndex(code, (opc) => opc == (byte)OpCodes.Exit);  // use length of expression as surrogate for complexity
283          UpdateParetoFront(q, complexity, code, optConsts, nParams, scalingFactor, scalingOffset);
284        }
285        return q;
286      }
287
288      private void Eval(byte[] code, int nParams, out double rho, out double[] optConsts) {
289        // we make a first pass to determine a valid starting configuration for all constants
290        // constant c in log(c + f(x)) is adjusted to guarantee that x is positive (see expression evaluator)
291        // scale and offset are set to optimal starting configuration
292        // assumes scale is the first param and offset is the last param
293
294        // reset constants
295        Array.Copy(ones, constsBuf, nParams);
296        evaluator.Exec(code, x, constsBuf, predBuf, adjustOffsetForLogAndExp: true);
297        funcEvaluations++;
298
299        if (nParams == 0 || constOptIterations < 0) {
300          // if we don't need to optimize parameters then we are done
301          // changing scale and offset does not influence r²
302          rho = Rho(y, predBuf);
303          optConsts = constsBuf;
304        } else {
305          // optimize constants using the starting point calculated above
306          OptimizeConstsLm(code, constsBuf, nParams, 0.0, nIters: constOptIterations);
307
308          evaluator.Exec(code, x, constsBuf, predBuf);
309          funcEvaluations++;
310
311          rho = Rho(y, predBuf);
312          optConsts = constsBuf;
313        }
314      }
315
316
317
318      #region helpers
319      private static double Rho(IEnumerable<double> x, IEnumerable<double> y) {
320        OnlineCalculatorError error;
321        double r = OnlinePearsonsRCalculator.Calculate(x, y, out error);
322        return error == OnlineCalculatorError.None ? r : 0.0;
323      }
324
325
326      private void OptimizeConstsLm(byte[] code, double[] consts, int nParams, double epsF = 0.0, int nIters = 100) {
327        double[] optConsts = new double[nParams]; // allocate a smaller buffer for constants opt (TODO perf?)
328        Array.Copy(consts, optConsts, nParams);
329
330        // direct usage of LM is recommended in alglib manual for better performance than the lsfit interface (which uses lm internally).
331        alglib.minlmstate state;
332        alglib.minlmreport rep = null;
333        alglib.minlmcreatevj(y.Length + 1, optConsts, out state); // +1 for penalty term
334        // Using the change of the gradient as stopping criterion is recommended in alglib manual.
335        // However, the most recent version of alglib (as of Oct 2017) only supports epsX as stopping criterion
336        alglib.minlmsetcond(state, epsg: 1E-6 * yStdDev, epsf: epsF, epsx: 0.0, maxits: nIters);
337        // alglib.minlmsetgradientcheck(state, 1E-5);
338        alglib.minlmoptimize(state, Func, FuncAndJacobian, null, code);
339        alglib.minlmresults(state, out optConsts, out rep);
340        funcEvaluations += rep.nfunc;
341        gradEvaluations += rep.njac * nParams;
342
343        if (rep.terminationtype < 0) throw new ArgumentException("lm failed: termination type = " + rep.terminationtype);
344
345        // only use optimized constants if successful
346        if (rep.terminationtype >= 0) {
347          Array.Copy(optConsts, consts, optConsts.Length);
348        }
349      }
350
351      private void Func(double[] arg, double[] fi, object obj) {
352        var code = (byte[])obj;
353        int n = predBuf.Length;
354        evaluator.Exec(code, x, arg, predBuf); // gradients are nParams x vLen
355        for (int r = 0; r < n; r++) {
356          var res = predBuf[r] - y[r];
357          fi[r] = res;
358        }
359
360        var penaltyIdx = fi.Length - 1;
361        fi[penaltyIdx] = 0.0;
362        // calc length of parameter vector for regularization
363        var aa = 0.0;
364        for (int i = 0; i < arg.Length; i++) {
365          aa += arg[i] * arg[i];
366        }
367        if (lambda > 0 && aa > 0) {
368          // scale lambda using stdDev(y) to make the parameter independent of the scale of y
369          // scale lambda using n to make parameter independent of the number of training points
370          // take the root because LM squares the result
371          fi[penaltyIdx] = Math.Sqrt(n * lambda / yStdDev * aa);
372        }
373      }
374
375      private void FuncAndJacobian(double[] arg, double[] fi, double[,] jac, object obj) {
376        int n = predBuf.Length;
377        int nParams = arg.Length;
378        var code = (byte[])obj;
379        evaluator.ExecGradient(code, x, arg, predBuf, gradBuf); // gradients are nParams x vLen
380        for (int r = 0; r < n; r++) {
381          var res = predBuf[r] - y[r];
382          fi[r] = res;
383
384          for (int k = 0; k < nParams; k++) {
385            jac[r, k] = gradBuf[k][r];
386          }
387        }
388        // calc length of parameter vector for regularization
389        double aa = 0.0;
390        for (int i = 0; i < arg.Length; i++) {
391          aa += arg[i] * arg[i];
392        }
393
394        var penaltyIdx = fi.Length - 1;
395        if (lambda > 0 && aa > 0) {
396          fi[penaltyIdx] = 0.0;
397          // scale lambda using stdDev(y) to make the parameter independent of the scale of y
398          // scale lambda using n to make parameter independent of the number of training points
399          // take the root because alglib LM squares the result
400          fi[penaltyIdx] = Math.Sqrt(n * lambda / yStdDev * aa);
401
402          for (int i = 0; i < arg.Length; i++) {
403            jac[penaltyIdx, i] = 0.5 / fi[penaltyIdx] * 2 * n * lambda / yStdDev * arg[i];
404          }
405        } else {
406          fi[penaltyIdx] = 0.0;
407          for (int i = 0; i < arg.Length; i++) {
408            jac[penaltyIdx, i] = 0.0;
409          }
410        }
411      }
412
413
414      private void UpdateParetoFront(double q, int complexity, byte[] code, double[] param, int nParam,
415        double[] scalingFactor, double[] scalingOffset) {
416        double[] best = new double[2];
417        double[] cur = new double[2] { q, complexity };
418        bool[] max = new[] { true, false };
419        var isNonDominated = true;
420        foreach (var e in paretoFront) {
421          var domRes = DominationCalculator<int>.Dominates(cur, e, max, true);
422          if (domRes == DominationResult.IsDominated) {
423            isNonDominated = false;
424            break;
425          }
426        }
427        if (isNonDominated) {
428          paretoFront.Add(cur);
429
430          // create model
431          var treeGen = new SymbolicExpressionTreeGenerator(problemData.AllowedInputVariables.ToArray());
432          var interpreter = new SymbolicDataAnalysisExpressionTreeLinearInterpreter();
433
434          var t = new SymbolicExpressionTree(treeGen.Exec(code, param, nParam, scalingFactor, scalingOffset));
435          var model = new SymbolicRegressionModel(problemData.TargetVariable, t, interpreter, lowerEstimationLimit, upperEstimationLimit);
436          model.Scale(problemData); // apply linear scaling
437
438          var sol = model.CreateRegressionSolution(this.problemData);
439          sol.Name = string.Format("{0:N5} {1}", q, complexity);
440
441          paretoBestModels.Add(sol);
442        }
443        for (int i = paretoFront.Count - 2; i >= 0; i--) {
444          var @ref = paretoFront[i];
445          var domRes = DominationCalculator<int>.Dominates(cur, @ref, max, true);
446          if (domRes == DominationResult.Dominates) {
447            paretoFront.RemoveAt(i);
448            paretoBestModels.RemoveAt(i);
449          }
450        }
451      }
452
453      #endregion
454
455
456    }
457
458
459    /// <summary>
460    /// Static method to initialize a state for the algorithm
461    /// </summary>
462    /// <param name="problemData">The problem data</param>
463    /// <param name="randSeed">Random seed.</param>
464    /// <param name="maxVariables">Maximum number of variable references that are allowed in the expression.</param>
465    /// <param name="scaleVariables">Optionally scale input variables to the interval [0..1] (recommended)</param>
466    /// <param name="constOptIterations">Maximum number of iterations for constants optimization (Levenberg-Marquardt)</param>
467    /// <param name="lambda">Penalty factor for regularization (0..inf.), small penalty disabled regularization.</param>
468    /// <param name="policy">Tree search policy (random, ucb, eps-greedy, ...)</param>
469    /// <param name="collectParameterOptimalModels">Optionally collect all Pareto-optimal solutions having minimal length and error.</param>
470    /// <param name="lowerEstimationLimit">Optionally limit the result of the expression to this lower value.</param>
471    /// <param name="upperEstimationLimit">Optionally limit the result of the expression to this upper value.</param>
472    /// <param name="allowProdOfVars">Allow products of expressions.</param>
473    /// <param name="allowExp">Allow expressions with exponentials.</param>
474    /// <param name="allowLog">Allow expressions with logarithms</param>
475    /// <param name="allowInv">Allow expressions with 1/x</param>
476    /// <param name="allowMultipleTerms">Allow expressions which are sums of multiple terms.</param>
477    /// <returns></returns>
478
479    public static IState CreateState(IRegressionProblemData problemData, uint randSeed, int maxVariables = 3,
480      bool scaleVariables = true, int constOptIterations = -1, double lambda = 0.0,
481      bool collectParameterOptimalModels = false,
482      double lowerEstimationLimit = double.MinValue, double upperEstimationLimit = double.MaxValue,
483      bool allowProdOfVars = true,
484      bool allowExp = true,
485      bool allowLog = true,
486      bool allowInv = true,
487      bool allowMultipleTerms = false
488      ) {
489      return new State(problemData, randSeed, maxVariables, scaleVariables, constOptIterations, lambda,
490        collectParameterOptimalModels,
491        lowerEstimationLimit, upperEstimationLimit,
492        allowProdOfVars, allowExp, allowLog, allowInv, allowMultipleTerms);
493    }
494
495    // returns the quality of the evaluated solution
496    public static double MakeStep(IState state) {
497      var mctsState = state as State;
498      if (mctsState == null) throw new ArgumentException("state");
499      if (mctsState.Done) throw new NotSupportedException("The tree search has enumerated all possible solutions.");
500
501      return TreeSearch(mctsState);
502    }
503    #endregion
504
505    private static double TreeSearch(State mctsState) {
506      var automaton = mctsState.automaton;
507      var tree = mctsState.tree;
508      var eval = mctsState.evalFun;
509      var rand = mctsState.random;
510      double q = 0;
511      bool success = false;
512      do {
513
514        automaton.Reset();
515        success = TryTreeSearchRec2(rand, tree, automaton, eval, mctsState, out q);
516        mctsState.totalRollouts++;
517      } while (!success && !tree.Done);
518      if (success) {
519        mctsState.effectiveRollouts++;
520
521#if DEBUG
522        // Console.WriteLine(mctsState.ExprStr(automaton));
523#endif
524
525        return q;
526      } else return 0.0;
527    }
528
529    // search forward
530    private static bool TryTreeSearchRec2(IRandom rand, Tree tree, Automaton automaton,
531      Func<byte[], int, double> eval,
532      State state,
533      out double q) {
534      // ROLLOUT AND EXPANSION
535      // We are navigating a graph (states might be reached via different paths) instead of a tree.
536      // State equivalence is checked through ExprHash (based on the generated code through the path).
537
538      // We switch between rollout-mode and expansion mode.
539      // Rollout-mode means we are navigating an existing path through the tree (using a rollout policy, e.g. UCB).
540      // Expansion mode means we expand the graph, creating new nodes and edges (using an expansion policy, e.g. shortest route to a complete expression).
541      // In expansion mode we might re-enter the graph and switch back to rollout-mode.
542      // We do this until we reach a complete expression (final state).
543
544      // Loops in the graph are prevented by checking that the level of a child must be larger than the level of the parent.
545      // Sub-graphs which have been completely searched are marked as done.
546      // Roll-out could lead to a state where all follow-states are done. In this case we call the rollout ineffective.
547
548      while (!automaton.IsFinalState(automaton.CurrentState)) {
549        // Console.WriteLine(automaton.stateNames[automaton.CurrentState]);
550        if (state.children.ContainsKey(tree)) {
551          if (state.children[tree].All(ch => ch.Done)) {
552            tree.Done = true;
553            break;
554          }
555          // ROLLOUT INSIDE TREE
556          // UCT selection within tree
557          int selectedIdx = 0;
558          if (state.children[tree].Count > 1) {
559            selectedIdx = SelectInternal(state.children[tree], rand);
560          }
561
562          tree = state.children[tree][selectedIdx];
563
564          // all steps where no alternatives could be taken immediately (without expanding the tree)
565          // TODO: simplification of the automaton
566          int[] possibleFollowStates = new int[1000];
567          int nFs;
568          automaton.FollowStates(automaton.CurrentState, ref possibleFollowStates, out nFs);
569          Debug.Assert(possibleFollowStates.Contains(tree.state));
570          automaton.Goto(tree.state);
571        } else {
572          // EXPAND
573          int[] possibleFollowStates = new int[1000];
574          int nFs;
575          string actionString = "";
576          automaton.FollowStates(automaton.CurrentState, ref possibleFollowStates, out nFs);
577
578          if (nFs == 0) {
579            // stuck in a dead end (no final state and no allowed follow states)
580            tree.Done = true;
581            break;
582          }
583          var newChildren = new List<Tree>(nFs);
584          state.children.Add(tree, newChildren);
585          for (int i = 0; i < nFs; i++) {
586            Tree child = null;
587            // for selected states (EvalStates) we introduce state unification (detection of equivalent states)
588            if (automaton.IsEvalState(possibleFollowStates[i])) {
589              var hc = Hashcode(automaton);
590              hc = ((hc << 5) + hc) ^ (ulong)tree.state; // TODO fix unit test for structure enumeration
591              if (!state.nodes.TryGetValue(hc, out child)) {
592                // Console.WriteLine("New expression (hash: {0}, state: {1})", Hashcode(automaton), automaton.stateNames[possibleFollowStates[i]]);
593                child = new Tree() {
594                  state = possibleFollowStates[i],
595                  expr = actionString + automaton.GetActionString(automaton.CurrentState, possibleFollowStates[i]),
596                  level = tree.level + 1
597                };
598                state.nodes.Add(hc, child);
599              }
600              // only allow forward edges (don't add the child if we would go back in the graph)
601              else if (child.level > tree.level) {
602                // Console.WriteLine("Existing expression (hash: {0}, state: {1})", Hashcode(automaton), automaton.stateNames[possibleFollowStates[i]]);
603                // whenever we join paths we need to propagate back the statistics of the existing node through the newly created link
604                // to all parents
605                BackpropagateStatistics(tree, state, child.visits);
606              } else {
607                // Console.WriteLine("Cycle (hash: {0}, state: {1})", Hashcode(automaton), automaton.stateNames[possibleFollowStates[i]]);
608                // prevent cycles
609                Debug.Assert(child.level <= tree.level);
610                child = null;
611              }
612            } else {
613              child = new Tree() {
614                state = possibleFollowStates[i],
615                expr = actionString + automaton.GetActionString(automaton.CurrentState, possibleFollowStates[i]),
616                level = tree.level + 1
617              };
618            }
619            if (child != null)
620              newChildren.Add(child);
621          }
622
623          if (!newChildren.Any()) {
624            // stuck in a dead end (no final state and no allowed follow states)
625            tree.Done = true;
626            break;
627          }
628
629          foreach (var ch in newChildren) {
630            if (!state.parents.ContainsKey(ch)) {
631              state.parents.Add(ch, new List<Tree>());
632            }
633            state.parents[ch].Add(tree);
634          }
635
636
637          // follow one of the children
638          tree = SelectStateLeadingToFinal(automaton, tree, rand, state);
639          automaton.Goto(tree.state);
640        }
641      }
642
643      bool success;
644
645      // EVALUATE TREE
646      if (!tree.Done && automaton.IsFinalState(automaton.CurrentState)) {
647        tree.Done = true;
648        // for debugging
649        // tree.expr = state.ExprStr(automaton);
650        byte[] code; int nParams;
651        automaton.GetCode(out code, out nParams);
652        q = eval(code, nParams);
653        success = true;
654        BackpropagateQuality(tree, q, state);
655      } else {
656        // we got stuck in roll-out (not evaluation necessary!)
657        q = 0.0;
658        success = false;
659      }
660
661      // RECURSIVELY BACKPROPAGATE RESULTS TO ALL PARENTS
662      // Update statistics
663      // Set branch to done if all children are done.
664      BackpropagateDone(tree, state);
665      BackpropagateDebugStats(tree, q, state);
666
667
668      return success;
669    }
670
671    private static int SelectInternal(List<Tree> list, IRandom rand) {
672      Debug.Assert(list.Any(t => !t.Done));
673     
674      // check if there is any node which has not been visited
675      for(int i=0;i<list.Count;i++) {
676        if (!list[i].Done && list[i].visits == 0) return i;
677      }
678
679      // choose a random node.
680      var idx = rand.Next(list.Count);
681      while (list[idx].Done) { idx = rand.Next(list.Count); }
682      return idx;
683    }
684
685    // backpropagate existing statistics to all parents
686    private static void BackpropagateStatistics(Tree tree, State state, int numVisits) {
687      tree.visits += numVisits;
688
689      if (state.parents.ContainsKey(tree)) {
690        foreach (var parent in state.parents[tree]) {
691          BackpropagateStatistics(parent, state, numVisits);
692        }
693      }
694    }
695
696    private static ulong Hashcode(Automaton automaton) {
697      byte[] code;
698      int nParams;
699      automaton.GetCode(out code, out nParams);
700      return (ulong)ExprHashSymbolic.GetHash(code, nParams);
701    }
702
703    private static void BackpropagateQuality(Tree tree, double q, State state) {
704      tree.visits++;
705      // TODO: q is ignored for now
706
707      if (state.parents.ContainsKey(tree)) {
708        foreach (var parent in state.parents[tree]) {
709          BackpropagateQuality(parent, q, state);
710        }
711      }
712    }
713
714    private static void BackpropagateDone(Tree tree, State state) {
715      if (state.children.ContainsKey(tree) && state.children[tree].All(ch => ch.Done)) {
716        tree.Done = true;
717        // children[tree] = null; keep all nodes
718      }
719
720      if (state.parents.ContainsKey(tree)) {
721        foreach (var parent in state.parents[tree]) {
722          BackpropagateDone(parent, state);
723        }
724      }
725    }
726
727    private static void BackpropagateDebugStats(Tree tree, double q, State state) {
728      if (state.parents.ContainsKey(tree)) {
729        foreach (var parent in state.parents[tree]) {
730          BackpropagateDebugStats(parent, q, state);
731        }
732      }
733
734    }
735
736    private static Tree SelectStateLeadingToFinal(Automaton automaton, Tree tree, IRandom rand, State state) {
737      // find the child with the smallest state value (smaller values are closer to the final state)
738      int selectedChildIdx = 0;
739      var children = state.children[tree];
740      Tree minChild = children.First();
741      for (int i = 1; i < children.Count; i++) {
742        if (children[i].state < minChild.state)
743          selectedChildIdx = i;
744      }
745      return children[selectedChildIdx];
746    }
747
748    // scales data and extracts values from dataset into arrays
749    private static void GenerateData(IRegressionProblemData problemData, bool scaleVariables, IEnumerable<int> rows,
750      out double[][] xs, out double[] y, out double[] scalingFactor, out double[] scalingOffset) {
751      xs = new double[problemData.AllowedInputVariables.Count()][];
752
753      var i = 0;
754      if (scaleVariables) {
755        scalingFactor = new double[xs.Length + 1];
756        scalingOffset = new double[xs.Length + 1];
757      } else {
758        scalingFactor = null;
759        scalingOffset = null;
760      }
761      foreach (var var in problemData.AllowedInputVariables) {
762        if (scaleVariables) {
763          var minX = problemData.Dataset.GetDoubleValues(var, rows).Min();
764          var maxX = problemData.Dataset.GetDoubleValues(var, rows).Max();
765          var range = maxX - minX;
766
767          // scaledX = (x - min) / range
768          var sf = 1.0 / range;
769          var offset = -minX / range;
770          scalingFactor[i] = sf;
771          scalingOffset[i] = offset;
772          i++;
773        }
774      }
775
776      if (scaleVariables) {
777        // transform target variable to zero-mean
778        scalingFactor[i] = 1.0;
779        scalingOffset[i] = -problemData.Dataset.GetDoubleValues(problemData.TargetVariable, rows).Average();
780      }
781
782      GenerateData(problemData, rows, scalingFactor, scalingOffset, out xs, out y);
783    }
784
785    // extract values from dataset into arrays
786    private static void GenerateData(IRegressionProblemData problemData, IEnumerable<int> rows, double[] scalingFactor, double[] scalingOffset,
787     out double[][] xs, out double[] y) {
788      xs = new double[problemData.AllowedInputVariables.Count()][];
789
790      int i = 0;
791      foreach (var var in problemData.AllowedInputVariables) {
792        var sf = scalingFactor == null ? 1.0 : scalingFactor[i];
793        var offset = scalingFactor == null ? 0.0 : scalingOffset[i];
794        xs[i++] =
795          problemData.Dataset.GetDoubleValues(var, rows).Select(xi => xi * sf + offset).ToArray();
796      }
797
798      {
799        var sf = scalingFactor == null ? 1.0 : scalingFactor[i];
800        var offset = scalingFactor == null ? 0.0 : scalingOffset[i];
801        y = problemData.Dataset.GetDoubleValues(problemData.TargetVariable, rows).Select(yi => yi * sf + offset).ToArray();
802      }
803    }
804
805    // for debugging only
806    #region debugging
807
808    private static string TraceTree(Tree tree, State state) {
809      var sb = new StringBuilder();
810      sb.Append(
811@"digraph {
812  ratio = fill;
813  node [style=filled];
814");
815      int nodeId = 0;
816
817      TraceTreeRec(tree, 0, sb, ref nodeId, state);
818      sb.Append("}");
819      return sb.ToString();
820    }
821
822    private static void TraceTreeRec(Tree tree, int parentId, StringBuilder sb, ref int nextId, State state) {
823      var tries = tree.visits;
824
825      sb.AppendFormat("{0} [label=\"{1}\"]; ", parentId, tries).AppendLine();
826
827      var list = new List<Tuple<int, int, Tree>>();
828      if (state.children.ContainsKey(tree)) {
829        foreach (var ch in state.children[tree]) {
830          nextId++;
831          tries = ch.visits;
832          sb.AppendFormat("{0} [label=\"{1}\"]; ", nextId, tries).AppendLine();
833          sb.AppendFormat("{0} -> {1} [label=\"{2}\"]", parentId, nextId, ch.expr).AppendLine();
834          list.Add(Tuple.Create(tries, nextId, ch));
835        }
836
837        foreach (var tup in list) {
838          var ch = tup.Item3;
839          var chId = tup.Item2;
840          if (state.children.ContainsKey(ch) && state.children[ch].Count == 1) {
841            var chch = state.children[ch].First();
842            nextId++;
843            tries = chch.visits;
844            sb.AppendFormat("{0} [label=\"{1}\"]; ", nextId, tries).AppendLine();
845            sb.AppendFormat("{0} -> {1} [label=\"{2}\"]", chId, nextId, chch.expr).AppendLine();
846          }
847        }
848
849        foreach (var tup in list.OrderByDescending(t => t.Item1).Take(1)) {
850          TraceTreeRec(tup.Item3, tup.Item2, sb, ref nextId, state);
851        }
852      }
853    }
854
855    private static string WriteTree(Tree tree, State state) {
856      var sb = new System.IO.StringWriter(System.Globalization.CultureInfo.InvariantCulture);
857      var nodeIds = new Dictionary<Tree, int>();
858      sb.Write(
859@"digraph {
860  ratio = fill;
861  node [style=filled];
862");
863      int threshold = /* state.nodes.Count > 500 ? 10 : */ 0;
864      foreach (var kvp in state.children) {
865        var parent = kvp.Key;
866        int parentId;
867        if (!nodeIds.TryGetValue(parent, out parentId)) {
868          parentId = nodeIds.Count + 1;
869          var tries = parent.visits;
870          if (tries > threshold)
871            sb.Write("{0} [label=\"{1}\"]; ", parentId, tries);
872          nodeIds.Add(parent, parentId);
873        }
874        foreach (var child in kvp.Value) {
875          int childId;
876          if (!nodeIds.TryGetValue(child, out childId)) {
877            childId = nodeIds.Count + 1;
878            nodeIds.Add(child, childId);
879          }
880          var tries = child.visits;
881          if (tries < 1) continue;
882          if (tries > threshold) {
883            sb.Write("{0} [label=\"{1}\"]; ", childId, tries);
884            var edgeLabel = child.expr;
885            // if (parent.expr.Length > 0) edgeLabel = edgeLabel.Replace(parent.expr, "");
886            sb.Write("{0} -> {1} [label=\"{2}\"]", parentId, childId, edgeLabel);
887          }
888        }
889      }
890
891      sb.Write("}");
892      return sb.ToString();
893    }
894  #endregion
895  }
896}
Note: See TracBrowser for help on using the repository browser.