1 | SUBROUTINE ZGEMV(TRANS,M,N,ALPHA,A,LDA,X,INCX,BETA,Y,INCY) |
---|
2 | * .. Scalar Arguments .. |
---|
3 | DOUBLE COMPLEX ALPHA,BETA |
---|
4 | INTEGER INCX,INCY,LDA,M,N |
---|
5 | CHARACTER TRANS |
---|
6 | * .. |
---|
7 | * .. Array Arguments .. |
---|
8 | DOUBLE COMPLEX A(LDA,*),X(*),Y(*) |
---|
9 | * .. |
---|
10 | * |
---|
11 | * Purpose |
---|
12 | * ======= |
---|
13 | * |
---|
14 | * ZGEMV performs one of the matrix-vector operations |
---|
15 | * |
---|
16 | * y := alpha*A*x + beta*y, or y := alpha*A'*x + beta*y, or |
---|
17 | * |
---|
18 | * y := alpha*conjg( A' )*x + beta*y, |
---|
19 | * |
---|
20 | * where alpha and beta are scalars, x and y are vectors and A is an |
---|
21 | * m by n matrix. |
---|
22 | * |
---|
23 | * Arguments |
---|
24 | * ========== |
---|
25 | * |
---|
26 | * TRANS - CHARACTER*1. |
---|
27 | * On entry, TRANS specifies the operation to be performed as |
---|
28 | * follows: |
---|
29 | * |
---|
30 | * TRANS = 'N' or 'n' y := alpha*A*x + beta*y. |
---|
31 | * |
---|
32 | * TRANS = 'T' or 't' y := alpha*A'*x + beta*y. |
---|
33 | * |
---|
34 | * TRANS = 'C' or 'c' y := alpha*conjg( A' )*x + beta*y. |
---|
35 | * |
---|
36 | * Unchanged on exit. |
---|
37 | * |
---|
38 | * M - INTEGER. |
---|
39 | * On entry, M specifies the number of rows of the matrix A. |
---|
40 | * M must be at least zero. |
---|
41 | * Unchanged on exit. |
---|
42 | * |
---|
43 | * N - INTEGER. |
---|
44 | * On entry, N specifies the number of columns of the matrix A. |
---|
45 | * N must be at least zero. |
---|
46 | * Unchanged on exit. |
---|
47 | * |
---|
48 | * ALPHA - COMPLEX*16 . |
---|
49 | * On entry, ALPHA specifies the scalar alpha. |
---|
50 | * Unchanged on exit. |
---|
51 | * |
---|
52 | * A - COMPLEX*16 array of DIMENSION ( LDA, n ). |
---|
53 | * Before entry, the leading m by n part of the array A must |
---|
54 | * contain the matrix of coefficients. |
---|
55 | * Unchanged on exit. |
---|
56 | * |
---|
57 | * LDA - INTEGER. |
---|
58 | * On entry, LDA specifies the first dimension of A as declared |
---|
59 | * in the calling (sub) program. LDA must be at least |
---|
60 | * max( 1, m ). |
---|
61 | * Unchanged on exit. |
---|
62 | * |
---|
63 | * X - COMPLEX*16 array of DIMENSION at least |
---|
64 | * ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n' |
---|
65 | * and at least |
---|
66 | * ( 1 + ( m - 1 )*abs( INCX ) ) otherwise. |
---|
67 | * Before entry, the incremented array X must contain the |
---|
68 | * vector x. |
---|
69 | * Unchanged on exit. |
---|
70 | * |
---|
71 | * INCX - INTEGER. |
---|
72 | * On entry, INCX specifies the increment for the elements of |
---|
73 | * X. INCX must not be zero. |
---|
74 | * Unchanged on exit. |
---|
75 | * |
---|
76 | * BETA - COMPLEX*16 . |
---|
77 | * On entry, BETA specifies the scalar beta. When BETA is |
---|
78 | * supplied as zero then Y need not be set on input. |
---|
79 | * Unchanged on exit. |
---|
80 | * |
---|
81 | * Y - COMPLEX*16 array of DIMENSION at least |
---|
82 | * ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n' |
---|
83 | * and at least |
---|
84 | * ( 1 + ( n - 1 )*abs( INCY ) ) otherwise. |
---|
85 | * Before entry with BETA non-zero, the incremented array Y |
---|
86 | * must contain the vector y. On exit, Y is overwritten by the |
---|
87 | * updated vector y. |
---|
88 | * |
---|
89 | * INCY - INTEGER. |
---|
90 | * On entry, INCY specifies the increment for the elements of |
---|
91 | * Y. INCY must not be zero. |
---|
92 | * Unchanged on exit. |
---|
93 | * |
---|
94 | * |
---|
95 | * Level 2 Blas routine. |
---|
96 | * |
---|
97 | * -- Written on 22-October-1986. |
---|
98 | * Jack Dongarra, Argonne National Lab. |
---|
99 | * Jeremy Du Croz, Nag Central Office. |
---|
100 | * Sven Hammarling, Nag Central Office. |
---|
101 | * Richard Hanson, Sandia National Labs. |
---|
102 | * |
---|
103 | * |
---|
104 | * .. Parameters .. |
---|
105 | DOUBLE COMPLEX ONE |
---|
106 | PARAMETER (ONE= (1.0D+0,0.0D+0)) |
---|
107 | DOUBLE COMPLEX ZERO |
---|
108 | PARAMETER (ZERO= (0.0D+0,0.0D+0)) |
---|
109 | * .. |
---|
110 | * .. Local Scalars .. |
---|
111 | DOUBLE COMPLEX TEMP |
---|
112 | INTEGER I,INFO,IX,IY,J,JX,JY,KX,KY,LENX,LENY |
---|
113 | LOGICAL NOCONJ |
---|
114 | * .. |
---|
115 | * .. External Functions .. |
---|
116 | LOGICAL LSAME |
---|
117 | EXTERNAL LSAME |
---|
118 | * .. |
---|
119 | * .. External Subroutines .. |
---|
120 | EXTERNAL XERBLA |
---|
121 | * .. |
---|
122 | * .. Intrinsic Functions .. |
---|
123 | INTRINSIC DCONJG,MAX |
---|
124 | * .. |
---|
125 | * |
---|
126 | * Test the input parameters. |
---|
127 | * |
---|
128 | INFO = 0 |
---|
129 | IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND. |
---|
130 | + .NOT.LSAME(TRANS,'C')) THEN |
---|
131 | INFO = 1 |
---|
132 | ELSE IF (M.LT.0) THEN |
---|
133 | INFO = 2 |
---|
134 | ELSE IF (N.LT.0) THEN |
---|
135 | INFO = 3 |
---|
136 | ELSE IF (LDA.LT.MAX(1,M)) THEN |
---|
137 | INFO = 6 |
---|
138 | ELSE IF (INCX.EQ.0) THEN |
---|
139 | INFO = 8 |
---|
140 | ELSE IF (INCY.EQ.0) THEN |
---|
141 | INFO = 11 |
---|
142 | END IF |
---|
143 | IF (INFO.NE.0) THEN |
---|
144 | CALL XERBLA('ZGEMV ',INFO) |
---|
145 | RETURN |
---|
146 | END IF |
---|
147 | * |
---|
148 | * Quick return if possible. |
---|
149 | * |
---|
150 | IF ((M.EQ.0) .OR. (N.EQ.0) .OR. |
---|
151 | + ((ALPHA.EQ.ZERO).AND. (BETA.EQ.ONE))) RETURN |
---|
152 | * |
---|
153 | NOCONJ = LSAME(TRANS,'T') |
---|
154 | * |
---|
155 | * Set LENX and LENY, the lengths of the vectors x and y, and set |
---|
156 | * up the start points in X and Y. |
---|
157 | * |
---|
158 | IF (LSAME(TRANS,'N')) THEN |
---|
159 | LENX = N |
---|
160 | LENY = M |
---|
161 | ELSE |
---|
162 | LENX = M |
---|
163 | LENY = N |
---|
164 | END IF |
---|
165 | IF (INCX.GT.0) THEN |
---|
166 | KX = 1 |
---|
167 | ELSE |
---|
168 | KX = 1 - (LENX-1)*INCX |
---|
169 | END IF |
---|
170 | IF (INCY.GT.0) THEN |
---|
171 | KY = 1 |
---|
172 | ELSE |
---|
173 | KY = 1 - (LENY-1)*INCY |
---|
174 | END IF |
---|
175 | * |
---|
176 | * Start the operations. In this version the elements of A are |
---|
177 | * accessed sequentially with one pass through A. |
---|
178 | * |
---|
179 | * First form y := beta*y. |
---|
180 | * |
---|
181 | IF (BETA.NE.ONE) THEN |
---|
182 | IF (INCY.EQ.1) THEN |
---|
183 | IF (BETA.EQ.ZERO) THEN |
---|
184 | DO 10 I = 1,LENY |
---|
185 | Y(I) = ZERO |
---|
186 | 10 CONTINUE |
---|
187 | ELSE |
---|
188 | DO 20 I = 1,LENY |
---|
189 | Y(I) = BETA*Y(I) |
---|
190 | 20 CONTINUE |
---|
191 | END IF |
---|
192 | ELSE |
---|
193 | IY = KY |
---|
194 | IF (BETA.EQ.ZERO) THEN |
---|
195 | DO 30 I = 1,LENY |
---|
196 | Y(IY) = ZERO |
---|
197 | IY = IY + INCY |
---|
198 | 30 CONTINUE |
---|
199 | ELSE |
---|
200 | DO 40 I = 1,LENY |
---|
201 | Y(IY) = BETA*Y(IY) |
---|
202 | IY = IY + INCY |
---|
203 | 40 CONTINUE |
---|
204 | END IF |
---|
205 | END IF |
---|
206 | END IF |
---|
207 | IF (ALPHA.EQ.ZERO) RETURN |
---|
208 | IF (LSAME(TRANS,'N')) THEN |
---|
209 | * |
---|
210 | * Form y := alpha*A*x + y. |
---|
211 | * |
---|
212 | JX = KX |
---|
213 | IF (INCY.EQ.1) THEN |
---|
214 | DO 60 J = 1,N |
---|
215 | IF (X(JX).NE.ZERO) THEN |
---|
216 | TEMP = ALPHA*X(JX) |
---|
217 | DO 50 I = 1,M |
---|
218 | Y(I) = Y(I) + TEMP*A(I,J) |
---|
219 | 50 CONTINUE |
---|
220 | END IF |
---|
221 | JX = JX + INCX |
---|
222 | 60 CONTINUE |
---|
223 | ELSE |
---|
224 | DO 80 J = 1,N |
---|
225 | IF (X(JX).NE.ZERO) THEN |
---|
226 | TEMP = ALPHA*X(JX) |
---|
227 | IY = KY |
---|
228 | DO 70 I = 1,M |
---|
229 | Y(IY) = Y(IY) + TEMP*A(I,J) |
---|
230 | IY = IY + INCY |
---|
231 | 70 CONTINUE |
---|
232 | END IF |
---|
233 | JX = JX + INCX |
---|
234 | 80 CONTINUE |
---|
235 | END IF |
---|
236 | ELSE |
---|
237 | * |
---|
238 | * Form y := alpha*A'*x + y or y := alpha*conjg( A' )*x + y. |
---|
239 | * |
---|
240 | JY = KY |
---|
241 | IF (INCX.EQ.1) THEN |
---|
242 | DO 110 J = 1,N |
---|
243 | TEMP = ZERO |
---|
244 | IF (NOCONJ) THEN |
---|
245 | DO 90 I = 1,M |
---|
246 | TEMP = TEMP + A(I,J)*X(I) |
---|
247 | 90 CONTINUE |
---|
248 | ELSE |
---|
249 | DO 100 I = 1,M |
---|
250 | TEMP = TEMP + DCONJG(A(I,J))*X(I) |
---|
251 | 100 CONTINUE |
---|
252 | END IF |
---|
253 | Y(JY) = Y(JY) + ALPHA*TEMP |
---|
254 | JY = JY + INCY |
---|
255 | 110 CONTINUE |
---|
256 | ELSE |
---|
257 | DO 140 J = 1,N |
---|
258 | TEMP = ZERO |
---|
259 | IX = KX |
---|
260 | IF (NOCONJ) THEN |
---|
261 | DO 120 I = 1,M |
---|
262 | TEMP = TEMP + A(I,J)*X(IX) |
---|
263 | IX = IX + INCX |
---|
264 | 120 CONTINUE |
---|
265 | ELSE |
---|
266 | DO 130 I = 1,M |
---|
267 | TEMP = TEMP + DCONJG(A(I,J))*X(IX) |
---|
268 | IX = IX + INCX |
---|
269 | 130 CONTINUE |
---|
270 | END IF |
---|
271 | Y(JY) = Y(JY) + ALPHA*TEMP |
---|
272 | JY = JY + INCY |
---|
273 | 140 CONTINUE |
---|
274 | END IF |
---|
275 | END IF |
---|
276 | * |
---|
277 | RETURN |
---|
278 | * |
---|
279 | * End of ZGEMV . |
---|
280 | * |
---|
281 | END |
---|