Free cookie consent management tool by TermsFeed Policy Generator

source: branches/2789_MathNetNumerics-Exploration/HeuristicLab.Algorithms.DataAnalysis.Experimental/sbart/ssbmv.f @ 15678

Last change on this file since 15678 was 15457, checked in by gkronber, 7 years ago

#2789 added Finbarr O'Sullivan smoothing spline code

File size: 9.2 KB
Line 
1      SUBROUTINE SSBMV(UPLO,N,K,ALPHA,A,LDA,X,INCX,BETA,Y,INCY)
2*     .. Scalar Arguments ..
3      REAL ALPHA,BETA
4      INTEGER INCX,INCY,K,LDA,N
5      CHARACTER UPLO
6*     ..
7*     .. Array Arguments ..
8      REAL A(LDA,*),X(*),Y(*)
9*     ..
10*
11*  Purpose
12*  =======
13*
14*  SSBMV  performs the matrix-vector  operation
15*
16*     y := alpha*A*x + beta*y,
17*
18*  where alpha and beta are scalars, x and y are n element vectors and
19*  A is an n by n symmetric band matrix, with k super-diagonals.
20*
21*  Arguments
22*  ==========
23*
24*  UPLO   - CHARACTER*1.
25*           On entry, UPLO specifies whether the upper or lower
26*           triangular part of the band matrix A is being supplied as
27*           follows:
28*
29*              UPLO = 'U' or 'u'   The upper triangular part of A is
30*                                  being supplied.
31*
32*              UPLO = 'L' or 'l'   The lower triangular part of A is
33*                                  being supplied.
34*
35*           Unchanged on exit.
36*
37*  N      - INTEGER.
38*           On entry, N specifies the order of the matrix A.
39*           N must be at least zero.
40*           Unchanged on exit.
41*
42*  K      - INTEGER.
43*           On entry, K specifies the number of super-diagonals of the
44*           matrix A. K must satisfy  0 .le. K.
45*           Unchanged on exit.
46*
47*  ALPHA  - REAL            .
48*           On entry, ALPHA specifies the scalar alpha.
49*           Unchanged on exit.
50*
51*  A      - REAL             array of DIMENSION ( LDA, n ).
52*           Before entry with UPLO = 'U' or 'u', the leading ( k + 1 )
53*           by n part of the array A must contain the upper triangular
54*           band part of the symmetric matrix, supplied column by
55*           column, with the leading diagonal of the matrix in row
56*           ( k + 1 ) of the array, the first super-diagonal starting at
57*           position 2 in row k, and so on. The top left k by k triangle
58*           of the array A is not referenced.
59*           The following program segment will transfer the upper
60*           triangular part of a symmetric band matrix from conventional
61*           full matrix storage to band storage:
62*
63*                 DO 20, J = 1, N
64*                    M = K + 1 - J
65*                    DO 10, I = MAX( 1, J - K ), J
66*                       A( M + I, J ) = matrix( I, J )
67*              10    CONTINUE
68*              20 CONTINUE
69*
70*           Before entry with UPLO = 'L' or 'l', the leading ( k + 1 )
71*           by n part of the array A must contain the lower triangular
72*           band part of the symmetric matrix, supplied column by
73*           column, with the leading diagonal of the matrix in row 1 of
74*           the array, the first sub-diagonal starting at position 1 in
75*           row 2, and so on. The bottom right k by k triangle of the
76*           array A is not referenced.
77*           The following program segment will transfer the lower
78*           triangular part of a symmetric band matrix from conventional
79*           full matrix storage to band storage:
80*
81*                 DO 20, J = 1, N
82*                    M = 1 - J
83*                    DO 10, I = J, MIN( N, J + K )
84*                       A( M + I, J ) = matrix( I, J )
85*              10    CONTINUE
86*              20 CONTINUE
87*
88*           Unchanged on exit.
89*
90*  LDA    - INTEGER.
91*           On entry, LDA specifies the first dimension of A as declared
92*           in the calling (sub) program. LDA must be at least
93*           ( k + 1 ).
94*           Unchanged on exit.
95*
96*  X      - REAL             array of DIMENSION at least
97*           ( 1 + ( n - 1 )*abs( INCX ) ).
98*           Before entry, the incremented array X must contain the
99*           vector x.
100*           Unchanged on exit.
101*
102*  INCX   - INTEGER.
103*           On entry, INCX specifies the increment for the elements of
104*           X. INCX must not be zero.
105*           Unchanged on exit.
106*
107*  BETA   - REAL            .
108*           On entry, BETA specifies the scalar beta.
109*           Unchanged on exit.
110*
111*  Y      - REAL             array of DIMENSION at least
112*           ( 1 + ( n - 1 )*abs( INCY ) ).
113*           Before entry, the incremented array Y must contain the
114*           vector y. On exit, Y is overwritten by the updated vector y.
115*
116*  INCY   - INTEGER.
117*           On entry, INCY specifies the increment for the elements of
118*           Y. INCY must not be zero.
119*           Unchanged on exit.
120*
121*
122*  Level 2 Blas routine.
123*
124*  -- Written on 22-October-1986.
125*     Jack Dongarra, Argonne National Lab.
126*     Jeremy Du Croz, Nag Central Office.
127*     Sven Hammarling, Nag Central Office.
128*     Richard Hanson, Sandia National Labs.
129*
130*
131*     .. Parameters ..
132      REAL ONE,ZERO
133      PARAMETER (ONE=1.0E+0,ZERO=0.0E+0)
134*     ..
135*     .. Local Scalars ..
136      REAL TEMP1,TEMP2
137      INTEGER I,INFO,IX,IY,J,JX,JY,KPLUS1,KX,KY,L
138*     ..
139*     .. External Functions ..
140      LOGICAL LSAME
141      EXTERNAL LSAME
142*     ..
143*     .. External Subroutines ..
144      EXTERNAL XERBLA
145*     ..
146*     .. Intrinsic Functions ..
147      INTRINSIC MAX,MIN
148*     ..
149*
150*     Test the input parameters.
151*
152      INFO = 0
153      IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
154          INFO = 1
155      ELSE IF (N.LT.0) THEN
156          INFO = 2
157      ELSE IF (K.LT.0) THEN
158          INFO = 3
159      ELSE IF (LDA.LT. (K+1)) THEN
160          INFO = 6
161      ELSE IF (INCX.EQ.0) THEN
162          INFO = 8
163      ELSE IF (INCY.EQ.0) THEN
164          INFO = 11
165      END IF
166      IF (INFO.NE.0) THEN
167          CALL XERBLA('SSBMV ',INFO)
168          RETURN
169      END IF
170*
171*     Quick return if possible.
172*
173      IF ((N.EQ.0) .OR. ((ALPHA.EQ.ZERO).AND. (BETA.EQ.ONE))) RETURN
174*
175*     Set up the start points in  X  and  Y.
176*
177      IF (INCX.GT.0) THEN
178          KX = 1
179      ELSE
180          KX = 1 - (N-1)*INCX
181      END IF
182      IF (INCY.GT.0) THEN
183          KY = 1
184      ELSE
185          KY = 1 - (N-1)*INCY
186      END IF
187*
188*     Start the operations. In this version the elements of the array A
189*     are accessed sequentially with one pass through A.
190*
191*     First form  y := beta*y.
192*
193      IF (BETA.NE.ONE) THEN
194          IF (INCY.EQ.1) THEN
195              IF (BETA.EQ.ZERO) THEN
196                  DO 10 I = 1,N
197                      Y(I) = ZERO
198   10             CONTINUE
199              ELSE
200                  DO 20 I = 1,N
201                      Y(I) = BETA*Y(I)
202   20             CONTINUE
203              END IF
204          ELSE
205              IY = KY
206              IF (BETA.EQ.ZERO) THEN
207                  DO 30 I = 1,N
208                      Y(IY) = ZERO
209                      IY = IY + INCY
210   30             CONTINUE
211              ELSE
212                  DO 40 I = 1,N
213                      Y(IY) = BETA*Y(IY)
214                      IY = IY + INCY
215   40             CONTINUE
216              END IF
217          END IF
218      END IF
219      IF (ALPHA.EQ.ZERO) RETURN
220      IF (LSAME(UPLO,'U')) THEN
221*
222*        Form  y  when upper triangle of A is stored.
223*
224          KPLUS1 = K + 1
225          IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
226              DO 60 J = 1,N
227                  TEMP1 = ALPHA*X(J)
228                  TEMP2 = ZERO
229                  L = KPLUS1 - J
230                  DO 50 I = MAX(1,J-K),J - 1
231                      Y(I) = Y(I) + TEMP1*A(L+I,J)
232                      TEMP2 = TEMP2 + A(L+I,J)*X(I)
233   50             CONTINUE
234                  Y(J) = Y(J) + TEMP1*A(KPLUS1,J) + ALPHA*TEMP2
235   60         CONTINUE
236          ELSE
237              JX = KX
238              JY = KY
239              DO 80 J = 1,N
240                  TEMP1 = ALPHA*X(JX)
241                  TEMP2 = ZERO
242                  IX = KX
243                  IY = KY
244                  L = KPLUS1 - J
245                  DO 70 I = MAX(1,J-K),J - 1
246                      Y(IY) = Y(IY) + TEMP1*A(L+I,J)
247                      TEMP2 = TEMP2 + A(L+I,J)*X(IX)
248                      IX = IX + INCX
249                      IY = IY + INCY
250   70             CONTINUE
251                  Y(JY) = Y(JY) + TEMP1*A(KPLUS1,J) + ALPHA*TEMP2
252                  JX = JX + INCX
253                  JY = JY + INCY
254                  IF (J.GT.K) THEN
255                      KX = KX + INCX
256                      KY = KY + INCY
257                  END IF
258   80         CONTINUE
259          END IF
260      ELSE
261*
262*        Form  y  when lower triangle of A is stored.
263*
264          IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
265              DO 100 J = 1,N
266                  TEMP1 = ALPHA*X(J)
267                  TEMP2 = ZERO
268                  Y(J) = Y(J) + TEMP1*A(1,J)
269                  L = 1 - J
270                  DO 90 I = J + 1,MIN(N,J+K)
271                      Y(I) = Y(I) + TEMP1*A(L+I,J)
272                      TEMP2 = TEMP2 + A(L+I,J)*X(I)
273   90             CONTINUE
274                  Y(J) = Y(J) + ALPHA*TEMP2
275  100         CONTINUE
276          ELSE
277              JX = KX
278              JY = KY
279              DO 120 J = 1,N
280                  TEMP1 = ALPHA*X(JX)
281                  TEMP2 = ZERO
282                  Y(JY) = Y(JY) + TEMP1*A(1,J)
283                  L = 1 - J
284                  IX = JX
285                  IY = JY
286                  DO 110 I = J + 1,MIN(N,J+K)
287                      IX = IX + INCX
288                      IY = IY + INCY
289                      Y(IY) = Y(IY) + TEMP1*A(L+I,J)
290                      TEMP2 = TEMP2 + A(L+I,J)*X(IX)
291  110             CONTINUE
292                  Y(JY) = Y(JY) + ALPHA*TEMP2
293                  JX = JX + INCX
294                  JY = JY + INCY
295  120         CONTINUE
296          END IF
297      END IF
298*
299      RETURN
300*
301*     End of SSBMV .
302*
303      END
Note: See TracBrowser for help on using the repository browser.